We study the harmonic solutions of periodically perturbed differential equations subjected to a possibly time-dependent constraint. We obtain a degree theoretic condition ensuring a “global branching” result for the nontrivial periodic solutions. The argument stems from a combination of techniques from the theory of Topological Degree and Differential-Algebraic Equations. As an application, the set of harmonic solutions of periodically perturbed implicit differential equations is investigated.

PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH PERIODIC CONSTRAINTS / Marco Spadini. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - STAMPA. - 48:(2025), pp. 10588.5007-10588.5015. [10.1002/mma.10588]

PERIODIC SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH PERIODIC CONSTRAINTS

Marco Spadini
2025

Abstract

We study the harmonic solutions of periodically perturbed differential equations subjected to a possibly time-dependent constraint. We obtain a degree theoretic condition ensuring a “global branching” result for the nontrivial periodic solutions. The argument stems from a combination of techniques from the theory of Topological Degree and Differential-Algebraic Equations. As an application, the set of harmonic solutions of periodically perturbed implicit differential equations is investigated.
2025
48
5007
5015
Goal 17: Partnerships for the goals
Marco Spadini
File in questo prodotto:
File Dimensione Formato  
movingConstraints-rev20240905.pdf

Accesso chiuso

Tipologia: Preprint (Submitted version)
Licenza: Tutti i diritti riservati
Dimensione 121.73 kB
Formato Adobe PDF
121.73 kB Adobe PDF   Richiedi una copia
Math Methods in App Sciences - 2024 - Spadini - Periodic solutions of differential equations with periodic constraints.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 272.44 kB
Formato Adobe PDF
272.44 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1399372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact