Learning problems involve settings in which an algorithm has to make decisions based on data, and possibly side information such as expert knowledge. This study has two main goals. First, it reviews and generalizes different results on the data and model complexity of quantum learning, where the data and/or the algorithm can be quantum, focusing on information-theoretic techniques. Second, it introduces the notion of copy complexity, which quantifies the number of copies of a quantum state required to achieve a target accuracy level. Copy complexity arises from the destructive nature of quantum measurements, which irreversibly alter the state to be processed, limiting the information that can be extracted about quantum data. As a result, empirical risk minimization is generally inapplicable. The paper presents novel results on the copy complexity for both training and testing. To make the paper self-contained and approachable by different research communities, an extensive background material is provided on classical results from statistical learning theory, as well as on the distinguishability of quantum states. Throughout, the differences between quantum and classical learning are highlighted by addressing both supervised and unsupervised learning, and extensive pointers are provided to the literature.The statistical performance of quantum learning is investigated as a function of the number of training data N$N$, and of the number of copies available for each quantum state in the training and testing data sets, respectively S$S$ and V$V$. Indeed, the biggest difference in quantum learning comes from the destructive nature of quantum measurements, which limits the amount of information that can be extracted with few copies. image

Statistical Complexity of Quantum Learning / Banchi, L; Pereira, JL; Jose, ST; Simeone, O. - In: ADVANCED QUANTUM TECHNOLOGIES. - ISSN 2511-9044. - ELETTRONICO. - (2024), pp. 2300311-2300353. [10.1002/qute.202300311]

Statistical Complexity of Quantum Learning

Banchi, L;
2024

Abstract

Learning problems involve settings in which an algorithm has to make decisions based on data, and possibly side information such as expert knowledge. This study has two main goals. First, it reviews and generalizes different results on the data and model complexity of quantum learning, where the data and/or the algorithm can be quantum, focusing on information-theoretic techniques. Second, it introduces the notion of copy complexity, which quantifies the number of copies of a quantum state required to achieve a target accuracy level. Copy complexity arises from the destructive nature of quantum measurements, which irreversibly alter the state to be processed, limiting the information that can be extracted about quantum data. As a result, empirical risk minimization is generally inapplicable. The paper presents novel results on the copy complexity for both training and testing. To make the paper self-contained and approachable by different research communities, an extensive background material is provided on classical results from statistical learning theory, as well as on the distinguishability of quantum states. Throughout, the differences between quantum and classical learning are highlighted by addressing both supervised and unsupervised learning, and extensive pointers are provided to the literature.The statistical performance of quantum learning is investigated as a function of the number of training data N$N$, and of the number of copies available for each quantum state in the training and testing data sets, respectively S$S$ and V$V$. Indeed, the biggest difference in quantum learning comes from the destructive nature of quantum measurements, which limits the amount of information that can be extracted with few copies. image
2024
2300311
2300353
Banchi, L; Pereira, JL; Jose, ST; Simeone, O
File in questo prodotto:
File Dimensione Formato  
Adv Quantum Tech - 2024 - Banchi - Statistical Complexity of Quantum Learning.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Solo lettura
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1401120
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 8
social impact