We find asymptotic lower bounds for the numbers of both Beauville and non-Beauville 2-generator finite p-groups of a fixed order, which turn out to coincide with the best known asymptotic lower bound for the total number of 2-generator finite p-groups of the same order. This shows that both Beauville and non-Beauville groups are abundant within the family of finite p-groups.

On the asymptotic behaviour of the number of Beauville and non-Beauville p-groups / Fernandez Alcober GA; Gul S; Vannacci M. - In: PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6115. - STAMPA. - 120:(2021), pp. 220-241. [10.1112/plms.12295]

On the asymptotic behaviour of the number of Beauville and non-Beauville p-groups

Vannacci M
2021

Abstract

We find asymptotic lower bounds for the numbers of both Beauville and non-Beauville 2-generator finite p-groups of a fixed order, which turn out to coincide with the best known asymptotic lower bound for the total number of 2-generator finite p-groups of the same order. This shows that both Beauville and non-Beauville groups are abundant within the family of finite p-groups.
2021
120
220
241
Fernandez Alcober GA; Gul S; Vannacci M
File in questo prodotto:
File Dimensione Formato  
On the asymptotic behaviour of the number of Beauville.pdf

Accesso chiuso

Licenza: Tutti i diritti riservati
Dimensione 282.51 kB
Formato Adobe PDF
282.51 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1401488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact