Let cp(R) be the probability that two random elements of a finite ring R commute and zp(R) the probability that the product of two random elements in R is zero. We show that if cp(R) = epsilon, then there exists a Lie-ideal D in the Lie-ring (R, [\cdot,\cdot]) with epsilon-bounded index and with [D, D] of epsilon-bounded order. If zp(R) = epsilon, then there exists an ideal D in R with e-bounded index and D2 of e-bounded order. These results are analogous to the well-known theorem of Neumann on the commuting probability in finite groups.

Commuting and product-zero probability in finite rings / Shumyatsky, Pavel; Vannacci, Matteo. - In: INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION. - ISSN 0218-1967. - STAMPA. - 34:(2024), pp. 201-206. [10.1142/s0218196724500061]

Commuting and product-zero probability in finite rings

Vannacci, Matteo
2024

Abstract

Let cp(R) be the probability that two random elements of a finite ring R commute and zp(R) the probability that the product of two random elements in R is zero. We show that if cp(R) = epsilon, then there exists a Lie-ideal D in the Lie-ring (R, [\cdot,\cdot]) with epsilon-bounded index and with [D, D] of epsilon-bounded order. If zp(R) = epsilon, then there exists an ideal D in R with e-bounded index and D2 of e-bounded order. These results are analogous to the well-known theorem of Neumann on the commuting probability in finite groups.
2024
34
201
206
Shumyatsky, Pavel; Vannacci, Matteo
File in questo prodotto:
File Dimensione Formato  
2307.12633v1.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 105.58 kB
Formato Adobe PDF
105.58 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1401755
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact