We provide some new integral estimates for solutions to Hamilton-Jacobi equations and we discuss several consequences, ranging from Lp-rates of convergence for the vanishing viscosity approximation to regularizing effects for the Cauchy problem in the whole Euclidean space and Liouville-type theorems. Our approach is based on duality techniques à la Evans and a careful study of advection-diffusion equations. The optimality of the results is discussed by several examples.

Quantitative and qualitative properties for Hamilton-Jacobi PDEs via the nonlinear adjoint method / Fabio Camilli, Alessandro Goffi, Cristian Mendico. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 2036-2145. - ELETTRONICO. - (In corso di stampa), pp. 0-0.

Quantitative and qualitative properties for Hamilton-Jacobi PDEs via the nonlinear adjoint method

Alessandro Goffi
;
In corso di stampa

Abstract

We provide some new integral estimates for solutions to Hamilton-Jacobi equations and we discuss several consequences, ranging from Lp-rates of convergence for the vanishing viscosity approximation to regularizing effects for the Cauchy problem in the whole Euclidean space and Liouville-type theorems. Our approach is based on duality techniques à la Evans and a careful study of advection-diffusion equations. The optimality of the results is discussed by several examples.
In corso di stampa
0
0
Fabio Camilli, Alessandro Goffi, Cristian Mendico
File in questo prodotto:
File Dimensione Formato  
Quantitative_rev_AnnaliSNS_v4281124.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 450.07 kB
Formato Adobe PDF
450.07 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1401921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact