Directed acyclic graphical models are statistical models that use a directed acyclic graph (DAG) to represent the conditional independence structure of a set of random variables. We introduce a new class of DAG models tailored for circular variables having an Inverse Stereographic Normal distribution. We present a case study where the proposed models are employed to describe conditional independences of a sequence of angles summarising the structure of a protein.

Inverse Stereographic Gaussian DAG models / Anna Gottard; Agnese Panzera. - STAMPA. - Italian Statistical Society Series on Advances in Statistics:(In corso di stampa), pp. 1-6. (Intervento presentato al convegno SIS 2024).

Inverse Stereographic Gaussian DAG models

Anna Gottard
;
Agnese Panzera
In corso di stampa

Abstract

Directed acyclic graphical models are statistical models that use a directed acyclic graph (DAG) to represent the conditional independence structure of a set of random variables. We introduce a new class of DAG models tailored for circular variables having an Inverse Stereographic Normal distribution. We present a case study where the proposed models are employed to describe conditional independences of a sequence of angles summarising the structure of a protein.
In corso di stampa
Methodological and Applied Statistics and Demography – SIS 2024 Short Papers
SIS 2024
Anna Gottard; Agnese Panzera
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1402336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact