We study the problem of estimating circular densities when sample data are affected by measurement errors. We propose a deconvolution approach involving lower bias kernel estimators which take the additional source of bias due to the presence of measurement errors into account. Some asymptotic properties are discussed, and numerical results are provided along with a real data case study.

Lower Bias Circular Density Estimation with Contaminated Data / Marco DiMarzio; Stefania Fensore; Agnese Panzera; Chiara Passamonti. - STAMPA. - III:(2025), pp. 599-604. (Intervento presentato al convegno SIS 2024) [10.1007/978-3-031-64431-3_99].

Lower Bias Circular Density Estimation with Contaminated Data

Agnese Panzera;
2025

Abstract

We study the problem of estimating circular densities when sample data are affected by measurement errors. We propose a deconvolution approach involving lower bias kernel estimators which take the additional source of bias due to the presence of measurement errors into account. Some asymptotic properties are discussed, and numerical results are provided along with a real data case study.
2025
Methodological and Applied Statistics and Demography – SIS 2024 Short Papers
SIS 2024
Marco DiMarzio; Stefania Fensore; Agnese Panzera; Chiara Passamonti
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1402932
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact