We show that every finite group G of size at least 3 has a nilpotent subgroup of class at most 2 and size at least |G|1/32 log log |G|. This answers a question of Pyber, and is essentially best possible.
NILPOTENT SUBGROUPS OF CLASS 2 IN FINITE GROUPS / Sabatini L.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - ELETTRONICO. - 150:(2022), pp. 3241-3244. [10.1090/proc/15933]
NILPOTENT SUBGROUPS OF CLASS 2 IN FINITE GROUPS
Sabatini L.
2022
Abstract
We show that every finite group G of size at least 3 has a nilpotent subgroup of class at most 2 and size at least |G|1/32 log log |G|. This answers a question of Pyber, and is essentially best possible.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
S0002-9939-2022-15933-4.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
127.98 kB
Formato
Adobe PDF
|
127.98 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.