We show that every finite group G of size at least 3 has a nilpotent subgroup of class at most 2 and size at least |G|1/32 log log |G|. This answers a question of Pyber, and is essentially best possible.

NILPOTENT SUBGROUPS OF CLASS 2 IN FINITE GROUPS / Sabatini L.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - ELETTRONICO. - 150:(2022), pp. 3241-3244. [10.1090/proc/15933]

NILPOTENT SUBGROUPS OF CLASS 2 IN FINITE GROUPS

Sabatini L.
2022

Abstract

We show that every finite group G of size at least 3 has a nilpotent subgroup of class at most 2 and size at least |G|1/32 log log |G|. This answers a question of Pyber, and is essentially best possible.
2022
150
3241
3244
Sabatini L.
File in questo prodotto:
File Dimensione Formato  
S0002-9939-2022-15933-4.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 127.98 kB
Formato Adobe PDF
127.98 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1403770
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact