The Chapman–Enskog method, in combination with the quantum maximum entropy principle (QMEP), is applied to the Wigner equation in order to obtain quantum Navier–Stokes equations for electrons in graphene in the isothermal case. The derivation is based on the quantum version of the maximum entropy principle and follows the lines of Ringhofer–Degond–Méhats' theory (J. Stat. Phys. 112, 2003 and Z. Angew. Math. Mech. 90, 2010). The model obtained in this way is then semiclassically expanded up to O(h^2).
Quantum Navier–Stokes equations for electrons in graphene / Luigi Barletti; Lucio Demeio; Sara Nicoletti. - In: ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND MECHANIK. - ISSN 1521-4001. - STAMPA. - ...:(2024), pp. 0-0. [10.1002/zamm.202400484]
Quantum Navier–Stokes equations for electrons in graphene
Luigi Barletti;Lucio Demeio;Sara Nicoletti
2024
Abstract
The Chapman–Enskog method, in combination with the quantum maximum entropy principle (QMEP), is applied to the Wigner equation in order to obtain quantum Navier–Stokes equations for electrons in graphene in the isothermal case. The derivation is based on the quantum version of the maximum entropy principle and follows the lines of Ringhofer–Degond–Méhats' theory (J. Stat. Phys. 112, 2003 and Z. Angew. Math. Mech. 90, 2010). The model obtained in this way is then semiclassically expanded up to O(h^2).File | Dimensione | Formato | |
---|---|---|---|
Z Angew Math Mech - 2024 - Barletti - Quantum Navier Stokes equations for electrons in graphene.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
252.56 kB
Formato
Adobe PDF
|
252.56 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.