Neural networks are gaining widespread relevance for their versatility, holding the promise to yield a significant methodological shift in different domain of applied research. Here, we provide a simple pedagogical account of the basic functioning of a feedforward neural network. Then we move forward to reviewing two recent applications of machine learning to Earth and Materials Science. We will in particular begin by discussing a neural network based geothermobarometer, which returns reliable predictions of the pressure/temperature conditions of magma storage. Further, we will turn to illustrate how machine learning tools, tested on the list of minerals from the International Mineralogical Association, can help in the search for novel superconducting materials.

A short introduction to neural networks and their application to Earth and Materials Science / D. Fanelli, L. Bindi, L. Chicchi, C. Pereti, R. Sessoli, S. Tommasini. - In: RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI. - ISSN 2037-4631. - ELETTRONICO. - 35:(2024), pp. 881-892. [10.1007/s12210-024-01271-8]

A short introduction to neural networks and their application to Earth and Materials Science

D. Fanelli
;
L. Bindi
Membro del Collaboration Group
;
L. Chicchi
Membro del Collaboration Group
;
R. Sessoli
Membro del Collaboration Group
;
S. Tommasini
Membro del Collaboration Group
2024

Abstract

Neural networks are gaining widespread relevance for their versatility, holding the promise to yield a significant methodological shift in different domain of applied research. Here, we provide a simple pedagogical account of the basic functioning of a feedforward neural network. Then we move forward to reviewing two recent applications of machine learning to Earth and Materials Science. We will in particular begin by discussing a neural network based geothermobarometer, which returns reliable predictions of the pressure/temperature conditions of magma storage. Further, we will turn to illustrate how machine learning tools, tested on the list of minerals from the International Mineralogical Association, can help in the search for novel superconducting materials.
2024
35
881
892
D. Fanelli, L. Bindi, L. Chicchi, C. Pereti, R. Sessoli, S. Tommasini
File in questo prodotto:
File Dimensione Formato  
Neural Network_geoscience.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1404603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact