New technologies, including artificial intelligence (AI), offer significant opportunities to improve blood glucose level (BGL) estimation systems, potentially enhancing care and quality of life for diabetic patients. This study aimed to assess the accuracy of BGL estimation using photoplethysmographic signal (PPG) analysis and AI methods by comparing various studies in terms of population, PPG signal acquisition and analysis, AI approaches, and BGL estimation performance. A systematic search was conducted in Scopus, Web of Science, Embase, PubMed and CINAHL databases. Conference proceedings and book chapters were included, excluding other gray literature, focusing on English-language studies published from 2010 to February 2024. Only publications concerning PPG signal analysis using AI algorithms for noninvasive estimation of BGL in patients with diabetes were considered. Of 48 identified articles, 24 were reviewed in full text, and 5 were deemed eligible. These studies varied in methodology (populations, devices, AI solutions) and evaluation metrics. However, all studies used Clarke error grid or Parkes error grid, with over 98% of estimates falling into clinically acceptable zones A or B. Current research confirm that PPG-based BGL estimation is feasible and accurate. Further studies are needed to overcome existing limitations and make this procedure available, accurate, and easy to perform.

Photoplethysmography and Artificial Intelligence for Blood Glucose Level Estimation in Diabetic Patients: A Scoping Review / Lombardi, Sara; Bocchi, Leonardo; Francia, Piergiorgio. - In: IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 12:(2024), pp. 178982-178996. [10.1109/access.2024.3508467]

Photoplethysmography and Artificial Intelligence for Blood Glucose Level Estimation in Diabetic Patients: A Scoping Review

Lombardi, Sara
;
Bocchi, Leonardo;Francia, Piergiorgio
2024

Abstract

New technologies, including artificial intelligence (AI), offer significant opportunities to improve blood glucose level (BGL) estimation systems, potentially enhancing care and quality of life for diabetic patients. This study aimed to assess the accuracy of BGL estimation using photoplethysmographic signal (PPG) analysis and AI methods by comparing various studies in terms of population, PPG signal acquisition and analysis, AI approaches, and BGL estimation performance. A systematic search was conducted in Scopus, Web of Science, Embase, PubMed and CINAHL databases. Conference proceedings and book chapters were included, excluding other gray literature, focusing on English-language studies published from 2010 to February 2024. Only publications concerning PPG signal analysis using AI algorithms for noninvasive estimation of BGL in patients with diabetes were considered. Of 48 identified articles, 24 were reviewed in full text, and 5 were deemed eligible. These studies varied in methodology (populations, devices, AI solutions) and evaluation metrics. However, all studies used Clarke error grid or Parkes error grid, with over 98% of estimates falling into clinically acceptable zones A or B. Current research confirm that PPG-based BGL estimation is feasible and accurate. Further studies are needed to overcome existing limitations and make this procedure available, accurate, and easy to perform.
2024
12
178982
178996
Lombardi, Sara; Bocchi, Leonardo; Francia, Piergiorgio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1404775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact