Visible Light Communication (VLC) is a cutting-edge transmission technique where data is sent by modulating light intensity. Manchester On–Off Keying (OOK) is among the most used modulation techniques in VLC and is normed by IEEE 802.15.7 standard for wireless networks. Various Manchester decoder schemes are documented in the literature, often leveraging minimal two-level analog-to-digital converters followed by straightforward digital logic. These methods often compromise performance for simplicity. However, the VLC applications in fields like automotive and/or aerospace require the maximum performance in terms of bit error rate (BER) with respect to Signal-to-Noise Ratio (SNR), together with a real-time low-latency implementation. In this work, we introduce a high-performance Manchester decoder and detail its implementation in a Field Programmable Gate Array (FPGA). The decoder operates by acquiring a fully resolved signal (12-bit resolution) and by calculating the phase of the transmitted bit. Additionally, the proposed decoder achieves and maintains synchronization with the incoming signal, tolerating frequency shifts and jitter up to 1%. The Manchester decoder was tested in a VLC system with automotive-certified headlamps, realizing an IEEE 802.15.7-compliant link at 100 kb/s. The proposed decoder ensures a BER below 10−2 for SNR > −12 dB and, compared to a standard decoder, achieves the same BER when the input signal has an SNR of 10 dB lower.

FPGA-Based Manchester Decoder for IEEE 802.15.7 Visible Light Communications / Ricci, Stefano; Caputo, Stefano; Mucchi, Lorenzo. - In: ELECTRONICS. - ISSN 2079-9292. - ELETTRONICO. - 14:(2025), pp. 96.0-96.0. [10.3390/electronics14010096]

FPGA-Based Manchester Decoder for IEEE 802.15.7 Visible Light Communications

Ricci, Stefano
;
Caputo, Stefano;Mucchi, Lorenzo
2025

Abstract

Visible Light Communication (VLC) is a cutting-edge transmission technique where data is sent by modulating light intensity. Manchester On–Off Keying (OOK) is among the most used modulation techniques in VLC and is normed by IEEE 802.15.7 standard for wireless networks. Various Manchester decoder schemes are documented in the literature, often leveraging minimal two-level analog-to-digital converters followed by straightforward digital logic. These methods often compromise performance for simplicity. However, the VLC applications in fields like automotive and/or aerospace require the maximum performance in terms of bit error rate (BER) with respect to Signal-to-Noise Ratio (SNR), together with a real-time low-latency implementation. In this work, we introduce a high-performance Manchester decoder and detail its implementation in a Field Programmable Gate Array (FPGA). The decoder operates by acquiring a fully resolved signal (12-bit resolution) and by calculating the phase of the transmitted bit. Additionally, the proposed decoder achieves and maintains synchronization with the incoming signal, tolerating frequency shifts and jitter up to 1%. The Manchester decoder was tested in a VLC system with automotive-certified headlamps, realizing an IEEE 802.15.7-compliant link at 100 kb/s. The proposed decoder ensures a BER below 10−2 for SNR > −12 dB and, compared to a standard decoder, achieves the same BER when the input signal has an SNR of 10 dB lower.
2025
14
0
0
Ricci, Stefano; Caputo, Stefano; Mucchi, Lorenzo
File in questo prodotto:
File Dimensione Formato  
electronics-14-00096.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Creative commons
Dimensione 5.9 MB
Formato Adobe PDF
5.9 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1406455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact