Background: Cannabidiol (CBD) is a highly lipophilic compound with potential therapeutic applications in neurological disorders. However, its poor aqueous solubility and bioavailability, coupled with instability in physiological conditions, significantly limit its clinical use. Objectives: This study aimed to develop and characterize nanovesicles incorporating Tween 20 to enhance CBD encapsulation, stability, and the performance across the blood–brain barrier (BBB). Methods: Nanovesicles were prepared via thin-film hydration followed by sonication and optimized for size, polydispersity index, and zeta potential. Stability studies were conducted under physiological conditions and during storage at 4 ◦C. In vitro release studies employed the dialysis bag method, while permeability across the BBB was assessed using PAMPA-BBB and the hCMEC/D3-BBB cell line, characterized for brain endothelial phenotype and largely employed as a model of human blood–brain barrier (BBB) function. Cytotoxicity was evaluated via MTT and LDH assays. Results: The quantification of CBD was carried out by HPLC-DAD and HPLC-MS/MS. Nanovesicles with Tween 20 (VS-CBD) exhibited smaller size (65.27 ± 1.27 nm vs. 90.7 ± 0.2), lower polydispersity (0.230 ± 0.005 vs. 0.295 ± 0.003), and higher stability compared to conventional liposomes (L-CBD). VS-CBD achieved high encapsulation efficiency (96.80 ± 0.96%) and recovery (99.89 ± 0.52%). Release studies showed sustained CBD release with Higuchi model fitting (R2 = 0.9901). Both PAMPA-BBB and hCMEC/D3-BBB cell lines demonstrated an improved controlled permeability of the formulation compared to free CBD. Cytotoxicity tests confirmed the good biocompatibility of VS-CBD formulations. The addition of Tween 20 to nanovesicles enhanced CBD encapsulation, stability, and controlled release. Conclusions: These nanovesicles represent a promising strategy to improve CBD delivery to the brain, offering sustained therapeutic effects and reduced dosing frequency, potentially benefiting the treatment of neurological disorders.
Development and Blood–Brain Barrier Penetration of Nanovesicles Loaded with Cannabidiol / Lucia Grifoni, Elisa Landucci, Giuseppe Pieraccini, Costanza Mazzantini, Maria Camilla Bergonzi, Domenico E. Pellegrini-Giampietro, Anna Rita Bilia. - In: PHARMACEUTICALS. - ISSN 1424-8247. - ELETTRONICO. - (2025), pp. 0-0.
Development and Blood–Brain Barrier Penetration of Nanovesicles Loaded with Cannabidiol.
Lucia Grifoni;Elisa Landucci;Giuseppe Pieraccini;Costanza Mazzantini;Maria Camilla Bergonzi;Domenico E. Pellegrini-Giampietro;Anna Rita Bilia
2025
Abstract
Background: Cannabidiol (CBD) is a highly lipophilic compound with potential therapeutic applications in neurological disorders. However, its poor aqueous solubility and bioavailability, coupled with instability in physiological conditions, significantly limit its clinical use. Objectives: This study aimed to develop and characterize nanovesicles incorporating Tween 20 to enhance CBD encapsulation, stability, and the performance across the blood–brain barrier (BBB). Methods: Nanovesicles were prepared via thin-film hydration followed by sonication and optimized for size, polydispersity index, and zeta potential. Stability studies were conducted under physiological conditions and during storage at 4 ◦C. In vitro release studies employed the dialysis bag method, while permeability across the BBB was assessed using PAMPA-BBB and the hCMEC/D3-BBB cell line, characterized for brain endothelial phenotype and largely employed as a model of human blood–brain barrier (BBB) function. Cytotoxicity was evaluated via MTT and LDH assays. Results: The quantification of CBD was carried out by HPLC-DAD and HPLC-MS/MS. Nanovesicles with Tween 20 (VS-CBD) exhibited smaller size (65.27 ± 1.27 nm vs. 90.7 ± 0.2), lower polydispersity (0.230 ± 0.005 vs. 0.295 ± 0.003), and higher stability compared to conventional liposomes (L-CBD). VS-CBD achieved high encapsulation efficiency (96.80 ± 0.96%) and recovery (99.89 ± 0.52%). Release studies showed sustained CBD release with Higuchi model fitting (R2 = 0.9901). Both PAMPA-BBB and hCMEC/D3-BBB cell lines demonstrated an improved controlled permeability of the formulation compared to free CBD. Cytotoxicity tests confirmed the good biocompatibility of VS-CBD formulations. The addition of Tween 20 to nanovesicles enhanced CBD encapsulation, stability, and controlled release. Conclusions: These nanovesicles represent a promising strategy to improve CBD delivery to the brain, offering sustained therapeutic effects and reduced dosing frequency, potentially benefiting the treatment of neurological disorders.File | Dimensione | Formato | |
---|---|---|---|
Lipo e CBD e Brain pharmaceuticals-18-00160 2025.pdf
accesso aperto
Descrizione: Paper
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
2.33 MB
Formato
Adobe PDF
|
2.33 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.