We study a Dirichlet problem driven by the (degenerate or singular) fractional p-Laplacian and involving a (p − 1)-superlinear reaction at infinity, not necessarily satisfying the Ambrosetti–Rabinowitz condition. Using critical point theory, truncation, and Morse theory, we prove the existence of at least three nontrivial solutions to the problem.
Multiple solutions for superlinear fractional p-Laplacian equations / Antonio Iannizzotto ; Vasile Staicu; Vincenzo Vespri. - In: SN PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 2662-2971. - ELETTRONICO. - 6:(2025), pp. 1-20. [10.1007/s42985-025-00316-3]
Multiple solutions for superlinear fractional p-Laplacian equations
Vincenzo Vespri
2025
Abstract
We study a Dirichlet problem driven by the (degenerate or singular) fractional p-Laplacian and involving a (p − 1)-superlinear reaction at infinity, not necessarily satisfying the Ambrosetti–Rabinowitz condition. Using critical point theory, truncation, and Morse theory, we prove the existence of at least three nontrivial solutions to the problem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s42985-025-00316-3.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
397.04 kB
Formato
Adobe PDF
|
397.04 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.