Given $p\in[1,\infty)$ and a bounded open set $\Omega\subset\R^d$ with Lipschitz boundary, we study the $\Gamma$-convergence of the weighted fractional seminorm % \begin{equation*} [u]_{s,p,f}^p = \int_{\R^d} \int_{\R^d} \frac{|\tilde u(x)- \tilde u(y)|^p}{\|x-y\|^{d+sp}}\,f(x)\,f(y)\di x\di y \end{equation*} % as $s\to1^-$ for $u\in L^p(\Omega)$, where $\tilde u=u$ on $\Omega$ and $\tilde u=0$ on $\R^d\setminus\Omega$. Assuming that $(f_s)_{s\in(0,1)}\subset L^\infty(\R^d;[0,\infty))$ and $f\in\mathrm{Lip}_b(\R^d;(0,\infty))$ are such that $f_s\to f$ in $L^\infty(\R^d)$ as $s\to1^-$, we show that $(1-s)[u]_{s,p,f_s}$ $\Gamma$-converges to the Dirichlet $p$-energy weighted by $f^2$. In the case $p=2$, we also prove the convergence of the corresponding gradient flows.
On the Γ-limit of weighted fractional energies / Kubin A., Saracco G., Stefani G.. - ELETTRONICO. - (2025), pp. 1-19.
On the Γ-limit of weighted fractional energies
Saracco G.;
2025
Abstract
Given $p\in[1,\infty)$ and a bounded open set $\Omega\subset\R^d$ with Lipschitz boundary, we study the $\Gamma$-convergence of the weighted fractional seminorm % \begin{equation*} [u]_{s,p,f}^p = \int_{\R^d} \int_{\R^d} \frac{|\tilde u(x)- \tilde u(y)|^p}{\|x-y\|^{d+sp}}\,f(x)\,f(y)\di x\di y \end{equation*} % as $s\to1^-$ for $u\in L^p(\Omega)$, where $\tilde u=u$ on $\Omega$ and $\tilde u=0$ on $\R^d\setminus\Omega$. Assuming that $(f_s)_{s\in(0,1)}\subset L^\infty(\R^d;[0,\infty))$ and $f\in\mathrm{Lip}_b(\R^d;(0,\infty))$ are such that $f_s\to f$ in $L^\infty(\R^d)$ as $s\to1^-$, we show that $(1-s)[u]_{s,p,f_s}$ $\Gamma$-converges to the Dirichlet $p$-energy weighted by $f^2$. In the case $p=2$, we also prove the convergence of the corresponding gradient flows.File | Dimensione | Formato | |
---|---|---|---|
Kubin, Saracco, Stefani - On the Γ -limit of weighted fractional energies.pdf
accesso aperto
Tipologia:
Preprint (Submitted version)
Licenza:
Open Access
Dimensione
511.35 kB
Formato
Adobe PDF
|
511.35 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.