Endogenous glucocorticoids (GC) rapidly increase after acute exercise, and the phosphodiesterase's type 5 inhibitor (PDE5i) tadalafil influences this physiological adaptation. No data exist on acute effects of both acute exercise and PDE5i administration on 11β-hydroxysteroid dehydrogenases (11β-HSDs)-related GC metabolites. We aimed to investigate the rapid effects of exercise on serum GC metabolites, with and without tadalafil administration. A double blind crossover study was performed in eleven healthy male volunteers. After the volunteers randomly received a short-term administration of placebo or tadalafil (20 mg/die for 2 days), a maximal exercise test to exhaustion on cycle ergometer was performed. Then, after a 2-week washout period, the volunteers were crossed over. Blood samples were collected before starting exercise and at 5 and 30 min of recovery (+5-Rec, +30-Rec). Serum ACTH, corticosterone (Cn), cortisol (F), cortisone (E), tetrahydrocortisol (THF), tetrahydrocortisone (THE), cortols, cortolones and respective ratios were evaluated. Pre-Ex THF was higher after tadalafil. Exercise increased ACTH, Cn, F, E, THE, cortols and cortolones after both placebo and tadalafil, and THF after placebo. The F/E ratio increased at +5-Rec and decreased at +30-Rec after placebo. Compared to placebo, after tadalafil lower ACTH, F and Cn, higher THF/F and THE/E, and not E (at +5-Rec) and F/E modifications were observed. Acute exercise rapidly influences serum GC metabolites concentrations. Tadalafil influences both GC adaptation and 11β-HSDs activity during acute exercise. Additional researches on the effects of both exercise and PDE5i on tissue-specific 11β-HSDs activity at rest and during physiological adaptation are warranted. © 2014 Springer Science+Business Media New York.

Acute effects of physical exercise and phosphodiesterase's type 5 inhibition on serum 11β-hydroxysteroid dehydrogenases related glucocorticoids metabolites: a pilot study / Luigi Di Luigi; BOTRE', Francesco; Stefania Sabatini; Massimiliano Sansone; Monica Mazzarino; Laura Guidetti; Carlo Baldari; LENZI, Andrea; Daniela Caporossi; ROMANELLI, Francesco; Paolo Sgro. - In: ENDOCRINE. - ISSN 1355-008X. - STAMPA. - 47:(2014), pp. 952-958. [10.1007/s12020-014-0185-2]

Acute effects of physical exercise and phosphodiesterase's type 5 inhibition on serum 11β-hydroxysteroid dehydrogenases related glucocorticoids metabolites: a pilot study

BOTRE', Francesco;LENZI, Andrea;
2014

Abstract

Endogenous glucocorticoids (GC) rapidly increase after acute exercise, and the phosphodiesterase's type 5 inhibitor (PDE5i) tadalafil influences this physiological adaptation. No data exist on acute effects of both acute exercise and PDE5i administration on 11β-hydroxysteroid dehydrogenases (11β-HSDs)-related GC metabolites. We aimed to investigate the rapid effects of exercise on serum GC metabolites, with and without tadalafil administration. A double blind crossover study was performed in eleven healthy male volunteers. After the volunteers randomly received a short-term administration of placebo or tadalafil (20 mg/die for 2 days), a maximal exercise test to exhaustion on cycle ergometer was performed. Then, after a 2-week washout period, the volunteers were crossed over. Blood samples were collected before starting exercise and at 5 and 30 min of recovery (+5-Rec, +30-Rec). Serum ACTH, corticosterone (Cn), cortisol (F), cortisone (E), tetrahydrocortisol (THF), tetrahydrocortisone (THE), cortols, cortolones and respective ratios were evaluated. Pre-Ex THF was higher after tadalafil. Exercise increased ACTH, Cn, F, E, THE, cortols and cortolones after both placebo and tadalafil, and THF after placebo. The F/E ratio increased at +5-Rec and decreased at +30-Rec after placebo. Compared to placebo, after tadalafil lower ACTH, F and Cn, higher THF/F and THE/E, and not E (at +5-Rec) and F/E modifications were observed. Acute exercise rapidly influences serum GC metabolites concentrations. Tadalafil influences both GC adaptation and 11β-HSDs activity during acute exercise. Additional researches on the effects of both exercise and PDE5i on tissue-specific 11β-HSDs activity at rest and during physiological adaptation are warranted. © 2014 Springer Science+Business Media New York.
2014
47
952
958
Luigi Di Luigi; BOTRE', Francesco; Stefania Sabatini; Massimiliano Sansone; Monica Mazzarino; Laura Guidetti; Carlo Baldari; LENZI, Andrea; Daniela Ca...espandi
File in questo prodotto:
File Dimensione Formato  
Endocrine_47_2014_952-8.pdf

Accesso chiuso

Licenza: Tutti i diritti riservati
Dimensione 300.11 kB
Formato Adobe PDF
300.11 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1418710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact