Henrot and Lucardesi, in Commun. Contemp. Math. (2024), conjectured that among planar convex sets with prescribed minimal width, the equilateral triangle uniquely maximizes the Cheeger constant. In this short note, we confirm this conjecture. Moreover, we establish a stability result for the inequality in terms of the Hausdorff distance.

A reverse isoperimetric inequality for the Cheeger constant under width constraint / Ilias Ftouhi, Ilaria Lucardesi, Giorgio Saracco. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 1793-6683. - ELETTRONICO. - 00:(2025), pp. 00.1-00.17.

A reverse isoperimetric inequality for the Cheeger constant under width constraint

Giorgio Saracco
2025

Abstract

Henrot and Lucardesi, in Commun. Contemp. Math. (2024), conjectured that among planar convex sets with prescribed minimal width, the equilateral triangle uniquely maximizes the Cheeger constant. In this short note, we confirm this conjecture. Moreover, we establish a stability result for the inequality in terms of the Hausdorff distance.
2025
00
1
17
Ilias Ftouhi, Ilaria Lucardesi, Giorgio Saracco
File in questo prodotto:
File Dimensione Formato  
251008-FLS-final-w:acceptance.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 501.8 kB
Formato Adobe PDF
501.8 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1420812
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact