Henrot and Lucardesi, in Commun. Contemp. Math. (2024), conjectured that among planar convex sets with prescribed minimal width, the equilateral triangle uniquely maximizes the Cheeger constant. In this short note, we confirm this conjecture. Moreover, we establish a stability result for the inequality in terms of the Hausdorff distance.

A reverse isoperimetric inequality for the Cheeger constant under width constraint / Ilias Ftouhi, Ilaria Lucardesi, Giorgio Saracco. - ELETTRONICO. - (2025), pp. 1-17.

A reverse isoperimetric inequality for the Cheeger constant under width constraint

Giorgio Saracco
2025

Abstract

Henrot and Lucardesi, in Commun. Contemp. Math. (2024), conjectured that among planar convex sets with prescribed minimal width, the equilateral triangle uniquely maximizes the Cheeger constant. In this short note, we confirm this conjecture. Moreover, we establish a stability result for the inequality in terms of the Hausdorff distance.
2025
File in questo prodotto:
File Dimensione Formato  
FLS-reverse-cheeger-minimal-width.pdf

accesso aperto

Descrizione: preprint
Tipologia: Preprint (Submitted version)
Licenza: Open Access
Dimensione 466.59 kB
Formato Adobe PDF
466.59 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1420812
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact