Given a positive rational q, we consider Dyck paths of height at most two, subject to constraints on the number of consecutive peaks and consecutive valleys depending on q. We introduce a general class of Dyck paths, named rational Dyck paths, and provide the associated generating function based on their semilength, along with a construction for this class. Moreover, we characterize certain subsets of rational Dyck paths that are enumerated by the Q-bonacci numbers.

Rational Dyck Paths / Barcucci E.; Bernini A.; Bilotta S.; Pinzani R.. - In: JOURNAL OF INTEGER SEQUENCES. - ISSN 1530-7638. - ELETTRONICO. - 28:(2025), pp. 25.3.2.0-25.3.2.0.

Rational Dyck Paths

Barcucci E.;Bernini A.
;
Bilotta S.;Pinzani R.
2025

Abstract

Given a positive rational q, we consider Dyck paths of height at most two, subject to constraints on the number of consecutive peaks and consecutive valleys depending on q. We introduce a general class of Dyck paths, named rational Dyck paths, and provide the associated generating function based on their semilength, along with a construction for this class. Moreover, we characterize certain subsets of rational Dyck paths that are enumerated by the Q-bonacci numbers.
2025
28
0
0
Barcucci E.; Bernini A.; Bilotta S.; Pinzani R.
File in questo prodotto:
File Dimensione Formato  
bernini17.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 161.31 kB
Formato Adobe PDF
161.31 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1424293
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact