Myelofibrosis (MF) is a myeloproliferative neoplasm that is accompanied by driver JAK2, CALR, or MPL mutations in more than 90% of cases, leading to constitutive activation of the JAK–STAT pathway. MF is a multifaceted disease characterized by trilineage myeloid proliferation with prominent megakaryocyte atypia and bone marrow fibrosis, as well as splenomegaly, constitutional symptoms, ineffective erythropoiesis, extramedullary hematopoiesis, and a risk of leukemic progression and shortened survival. Therapy can range from observation alone in lower-risk and asymptomatic patients to allogeneic hematopoietic stem cell transplantation, which is the only potentially curative treatment capable of prolonging survival, although burdened by significant morbidity and mortality. The discovery of the JAK2 V617F mutation prompted the development of JAK inhibitors (JAKi) including the first-in-class JAK1/JAK2 inhibitor ruxolitinib and subsequent approval of fedratinib, pacritinib, and momelotinib. The latter has shown erythropoietic benefits by suppressing hepcidin expression via activin A receptor type 1 (ACVR1) inhibition, as well as reducing splenomegaly and symptoms. However, the current JAKi behave as anti-inflammatory drugs without a major impact on survival or disease progression. A better understanding of the genetics, mechanisms of fibrosis, cytopenia, and the role of inflammatory cytokines has led to the development of numerous therapeutic agents that target epigenetic regulation, signaling, telomerase, cell cycle, and apoptosis, nuclear export, and pro-fibrotic cytokines. Selective JAK2 V617F inhibitors and targeting of mutant CALR by immunotherapy are the most intriguing and promising approaches. This review focuses on approved and experimental treatments for MF, highlighting their biological background.
Targeted Therapies in Myelofibrosis: Present Landscape, Ongoing Studies, and Future Perspectives / Loscocco, Giuseppe G.; Guglielmelli, Paola. - In: AMERICAN JOURNAL OF HEMATOLOGY. - ISSN 0361-8609. - ELETTRONICO. - 100:(2025), pp. 30-50. [10.1002/ajh.27658]
Targeted Therapies in Myelofibrosis: Present Landscape, Ongoing Studies, and Future Perspectives
Loscocco, Giuseppe G.;Guglielmelli, Paola
2025
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm that is accompanied by driver JAK2, CALR, or MPL mutations in more than 90% of cases, leading to constitutive activation of the JAK–STAT pathway. MF is a multifaceted disease characterized by trilineage myeloid proliferation with prominent megakaryocyte atypia and bone marrow fibrosis, as well as splenomegaly, constitutional symptoms, ineffective erythropoiesis, extramedullary hematopoiesis, and a risk of leukemic progression and shortened survival. Therapy can range from observation alone in lower-risk and asymptomatic patients to allogeneic hematopoietic stem cell transplantation, which is the only potentially curative treatment capable of prolonging survival, although burdened by significant morbidity and mortality. The discovery of the JAK2 V617F mutation prompted the development of JAK inhibitors (JAKi) including the first-in-class JAK1/JAK2 inhibitor ruxolitinib and subsequent approval of fedratinib, pacritinib, and momelotinib. The latter has shown erythropoietic benefits by suppressing hepcidin expression via activin A receptor type 1 (ACVR1) inhibition, as well as reducing splenomegaly and symptoms. However, the current JAKi behave as anti-inflammatory drugs without a major impact on survival or disease progression. A better understanding of the genetics, mechanisms of fibrosis, cytopenia, and the role of inflammatory cytokines has led to the development of numerous therapeutic agents that target epigenetic regulation, signaling, telomerase, cell cycle, and apoptosis, nuclear export, and pro-fibrotic cytokines. Selective JAK2 V617F inhibitors and targeting of mutant CALR by immunotherapy are the most intriguing and promising approaches. This review focuses on approved and experimental treatments for MF, highlighting their biological background.| File | Dimensione | Formato | |
|---|---|---|---|
|
AJH-100-30.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Creative commons
Dimensione
712.57 kB
Formato
Adobe PDF
|
712.57 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



