Distributed generation and sector coupling are key factors for economic decarbonization. Because gas networks have a large storage capacity, they have attracted the attention of power engineers to use them to increase the flexibility and security of supply in the presence of renewable and distributed energy resources. This paper makes the first attempt to integrate the electricity and gas systems to fill available gas storage facilities with synthetic natural gas on a large scale. This synthetic natural gas can then be used to operate gas turbines and to compensate for the fluctuating production of renewable energy sources. The LINK-holistic architecture, which integrates renewable and distributed energy resources, is used in this work. It facilitates sector coupling, which means power-to-gas and gas-to-power, throughout the entire power grid and at the customer level. This work is limited to investigating the power-to-gas process at the prosumer level. The electricity surplus of rooftop PVs is used to produce synthetic natural gas, fed into the gas grid after covering the local gas load. The behaviors of the electricity and gas grids are investigated. Results show that electricity prosumers may also become prosumers of synthetic natural gas. The current unidirectional gas grids should be upgraded with compressors at pressure reduction groups to turn them bidirectional, allowing synthetic natural gas storage in the existing large gas storage appliances after considering the pipes’ linepack effect. The proposed solution could make it possible to fill the underground storage plants in summer, when the electricity and synthetic natural gas production exceed electrical and gas demand, respectively.

Behavior of the Electricity and Gas Grids When Injecting Synthetic Natural Gas Produced with Electricity Surplus of Rooftop PVs / Ademollo A.; Carcasci C.; Ilo A.. - In: SUSTAINABILITY. - ISSN 2071-1050. - ELETTRONICO. - 16:(2024), pp. 9747.1-9747.12. [10.3390/su16229747]

Behavior of the Electricity and Gas Grids When Injecting Synthetic Natural Gas Produced with Electricity Surplus of Rooftop PVs

Ademollo A.;Carcasci C.;
2024

Abstract

Distributed generation and sector coupling are key factors for economic decarbonization. Because gas networks have a large storage capacity, they have attracted the attention of power engineers to use them to increase the flexibility and security of supply in the presence of renewable and distributed energy resources. This paper makes the first attempt to integrate the electricity and gas systems to fill available gas storage facilities with synthetic natural gas on a large scale. This synthetic natural gas can then be used to operate gas turbines and to compensate for the fluctuating production of renewable energy sources. The LINK-holistic architecture, which integrates renewable and distributed energy resources, is used in this work. It facilitates sector coupling, which means power-to-gas and gas-to-power, throughout the entire power grid and at the customer level. This work is limited to investigating the power-to-gas process at the prosumer level. The electricity surplus of rooftop PVs is used to produce synthetic natural gas, fed into the gas grid after covering the local gas load. The behaviors of the electricity and gas grids are investigated. Results show that electricity prosumers may also become prosumers of synthetic natural gas. The current unidirectional gas grids should be upgraded with compressors at pressure reduction groups to turn them bidirectional, allowing synthetic natural gas storage in the existing large gas storage appliances after considering the pipes’ linepack effect. The proposed solution could make it possible to fill the underground storage plants in summer, when the electricity and synthetic natural gas production exceed electrical and gas demand, respectively.
2024
16
1
12
Ademollo A.; Carcasci C.; Ilo A.
File in questo prodotto:
File Dimensione Formato  
2024_05_Eldctricity_GasGrid_Albana_Ademollo_sustainability-16-09747.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 17.11 MB
Formato Adobe PDF
17.11 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1424753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact