Green hydrogen holds potential for decarbonizing the energy sector, but high production costs are a major barrier. This study provides a comprehensive techno-economic-financial-environmental analysis of PV-based grid-connected hydrogen production plants, targeting hard-to-abate industries having constant hydrogen demand across all Italy. Using real hourly data, the Multi Energy System Simulator (MESS), an in-house developed rule-based tool, was employed and integrated with Genetic Algorithm for optimal plant sizing. The aim is to minimize the Levelized Cost of Hydrogen (LCOH) while complying with regulatory frameworks for green hydrogen incentives access. Key findings show that hydrogen storage is more advantageous than battery storage for supply-side flexibility, and the optimal PV-to-electrolyzer size ratio ranges from 1.8 in Southern Italy to 2.1 in Northern Italy, with hydrogen tank designed for daily storage. Considering photovoltaic, electrolyzer and battery aging models grid dependence increases by 60 % when comparing the first and worst year of operation and leads to a 7 % increase in LCOH. Transitioning from the strictest (hourly) to the least stringent (annual) temporal correlation increases certified green hydrogen by 22 %, while LCOH decreases by only 3 %, suggesting that the environmental benefits of stringent temporal requirements outweigh their moderate economic drawbacks. These findings underscore the need for additional national-level incentives to allow the deployment of this technology and achieving cost parity with grey hydrogen.

An up-to-date perspective of levelized cost of hydrogen for PV-based grid-connected power-to-hydrogen plants across all Italy / Ademollo A.; Calabrese M.; Carcasci C.. - In: APPLIED ENERGY. - ISSN 0306-2619. - ELETTRONICO. - 379:(2025), pp. 124958.1-124958.12. [10.1016/j.apenergy.2024.124958]

An up-to-date perspective of levelized cost of hydrogen for PV-based grid-connected power-to-hydrogen plants across all Italy

Ademollo A.;Calabrese M.;Carcasci C.
2025

Abstract

Green hydrogen holds potential for decarbonizing the energy sector, but high production costs are a major barrier. This study provides a comprehensive techno-economic-financial-environmental analysis of PV-based grid-connected hydrogen production plants, targeting hard-to-abate industries having constant hydrogen demand across all Italy. Using real hourly data, the Multi Energy System Simulator (MESS), an in-house developed rule-based tool, was employed and integrated with Genetic Algorithm for optimal plant sizing. The aim is to minimize the Levelized Cost of Hydrogen (LCOH) while complying with regulatory frameworks for green hydrogen incentives access. Key findings show that hydrogen storage is more advantageous than battery storage for supply-side flexibility, and the optimal PV-to-electrolyzer size ratio ranges from 1.8 in Southern Italy to 2.1 in Northern Italy, with hydrogen tank designed for daily storage. Considering photovoltaic, electrolyzer and battery aging models grid dependence increases by 60 % when comparing the first and worst year of operation and leads to a 7 % increase in LCOH. Transitioning from the strictest (hourly) to the least stringent (annual) temporal correlation increases certified green hydrogen by 22 %, while LCOH decreases by only 3 %, suggesting that the environmental benefits of stringent temporal requirements outweigh their moderate economic drawbacks. These findings underscore the need for additional national-level incentives to allow the deployment of this technology and achieving cost parity with grey hydrogen.
2025
379
1
12
Ademollo A.; Calabrese M.; Carcasci C.
File in questo prodotto:
File Dimensione Formato  
2025_01_J_AppliedEnergy_Ademollo_Hydrogen.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 9.68 MB
Formato Adobe PDF
9.68 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1424754
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact