Accurate labeling of specific layers in the human cerebral cortex is crucial for advancing our understanding of neurodevelopmental and neurodegenerative disorders. Building on recent advancements in ultra-high-resolution ex vivo MRI, we present a novel semi-supervised segmentation model capable of identifying supragranular and infragranular layers in ex vivo MRI with unprecedented precision. On a dataset consisting of 17 whole-hemisphere ex vivo scans at 120 μm, we propose a Multi-resolution U-Nets framework that integrates global and local structural information, achieving reliable segmentation maps of the entire hemisphere, with Dice scores over 0.8 for supra- and infragranular layers. This enables surface modeling, atlas construction, anomaly detection in disease states, and cross-modality validation while also paving the way for finer layer segmentation. Our approach offers a powerful tool for comprehensive neuroanatomical investigations and holds promise for advancing our mechanistic understanding of progression of neurodegenerative diseases.

Segmentation of supragranular and infragranular layers in ultra-high-resolution 7T ex vivo MRI of the human cerebral cortex / Zeng X.; Puonti O.; Sayeed A.; Herisse R.; Mora J.; Evancic K.; Varadarajan D.; Balbastre Y.; Costantini I.; Scardigli M.; Ramazzotti J.; DiMeo D.; Mazzamuto G.; Pesce L.; Brady N.; Cheli F.; Pavone F.S.; Hof P.R.; Frost R.; Augustinack J.; van der Kouwe A.; Iglesias J.E.; Fischl B.. - In: CEREBRAL CORTEX. - ISSN 1047-3211. - ELETTRONICO. - 34:(2024), pp. bhae362.0-bhae362.0. [10.1093/cercor/bhae362]

Segmentation of supragranular and infragranular layers in ultra-high-resolution 7T ex vivo MRI of the human cerebral cortex

Costantini I.;Scardigli M.;Ramazzotti J.;Mazzamuto G.;Pesce L.;Brady N.;Cheli F.;Pavone F. S.;
2024

Abstract

Accurate labeling of specific layers in the human cerebral cortex is crucial for advancing our understanding of neurodevelopmental and neurodegenerative disorders. Building on recent advancements in ultra-high-resolution ex vivo MRI, we present a novel semi-supervised segmentation model capable of identifying supragranular and infragranular layers in ex vivo MRI with unprecedented precision. On a dataset consisting of 17 whole-hemisphere ex vivo scans at 120 μm, we propose a Multi-resolution U-Nets framework that integrates global and local structural information, achieving reliable segmentation maps of the entire hemisphere, with Dice scores over 0.8 for supra- and infragranular layers. This enables surface modeling, atlas construction, anomaly detection in disease states, and cross-modality validation while also paving the way for finer layer segmentation. Our approach offers a powerful tool for comprehensive neuroanatomical investigations and holds promise for advancing our mechanistic understanding of progression of neurodegenerative diseases.
2024
34
0
0
Zeng X.; Puonti O.; Sayeed A.; Herisse R.; Mora J.; Evancic K.; Varadarajan D.; Balbastre Y.; Costantini I.; Scardigli M.; Ramazzotti J.; DiMeo D.; Ma...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1424948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact