This study investigates the potential of rapeseed meal (RM), a protein-rich by-product of the rapeseed oil industry, as a raw material for the development of renewable materials. Due to the presence of antinutritional compounds, rapeseed meal is underutilized, primarily in low-value applications such as animal feed. In this work, rapeseed meal protein hydrolysates were enzymatically obtained and incorporated as plasticizers into rapeseed meal-based materials to improve their mechanical properties, water permeability, and thermal stability. Collagen hydrolysate has also been utilized as a low-cost additive to further enhance the material performance. The glycerol content was reduced to address permeability and migration issues associated with hydrophilic plasticizers. The results demonstrated that the incorporation of hydrolysates into rapeseed meal-based materials modulated thermal stability, water permeability, and mechanical properties—particularly elongation at break and flexibility. The latter increased proportionally with the hydrolysate content of RM-based materials. Additionally, aerobic biodegradation behavior, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) supported the material’s favorable performance characteristics, highlighting the potential of rapeseed meal as a viable, biodegradable alternative for sustainable materials in industrial applications.

Incorporation of Protein Hydrolysate into Rapeseed Meal-Based Materials to Improve Flexibility / Sara Aquilia; Claudia Bello; Michele Pinna; Sabrina Bianchi; Walter Giurlani; Francesco Ciardelli; Luca Rosi; Anna Maria Papini. - In: POLYMERS. - ISSN 2073-4360. - ELETTRONICO. - 17:(2025), pp. 0-0. [10.3390/polym17131740]

Incorporation of Protein Hydrolysate into Rapeseed Meal-Based Materials to Improve Flexibility

Sara Aquilia;Claudia Bello;Walter Giurlani;Luca Rosi
;
Anna Maria Papini
2025

Abstract

This study investigates the potential of rapeseed meal (RM), a protein-rich by-product of the rapeseed oil industry, as a raw material for the development of renewable materials. Due to the presence of antinutritional compounds, rapeseed meal is underutilized, primarily in low-value applications such as animal feed. In this work, rapeseed meal protein hydrolysates were enzymatically obtained and incorporated as plasticizers into rapeseed meal-based materials to improve their mechanical properties, water permeability, and thermal stability. Collagen hydrolysate has also been utilized as a low-cost additive to further enhance the material performance. The glycerol content was reduced to address permeability and migration issues associated with hydrophilic plasticizers. The results demonstrated that the incorporation of hydrolysates into rapeseed meal-based materials modulated thermal stability, water permeability, and mechanical properties—particularly elongation at break and flexibility. The latter increased proportionally with the hydrolysate content of RM-based materials. Additionally, aerobic biodegradation behavior, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) supported the material’s favorable performance characteristics, highlighting the potential of rapeseed meal as a viable, biodegradable alternative for sustainable materials in industrial applications.
2025
17
0
0
Sara Aquilia; Claudia Bello; Michele Pinna; Sabrina Bianchi; Walter Giurlani; Francesco Ciardelli; Luca Rosi; Anna Maria Papini
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1428196
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact