In this work we study a causal framework for linear structural equa- tion models that can be represented by a Gaussian regression chain graph typi- cally used to model multivariate regressions. We propose a methodology based on invariance causal prediction for the identification of the causal parents of a given multivariate response variable and the estimation of the causal effects. Prelimi- nary simulation studies show that, under suitable assumptions, the methodology is able to correctly identify the true causal parents.

Invariant Causal Prediction for Gaussian Multivariate Regression Graphs / Marco Borriero, Monia Lupparelli, Giovanni M. Marchetti, Veronica Vinciotti. - STAMPA. - (2025), pp. 1-213. ( Scientific Meeting of the Italian Statistical Society).

Invariant Causal Prediction for Gaussian Multivariate Regression Graphs

Marco Borriero;Monia Lupparelli;Giovanni M. Marchetti;
2025

Abstract

In this work we study a causal framework for linear structural equa- tion models that can be represented by a Gaussian regression chain graph typi- cally used to model multivariate regressions. We propose a methodology based on invariance causal prediction for the identification of the causal parents of a given multivariate response variable and the estimation of the causal effects. Prelimi- nary simulation studies show that, under suitable assumptions, the methodology is able to correctly identify the true causal parents.
2025
Statistics for Innovations II
Scientific Meeting of the Italian Statistical Society
Marco Borriero, Monia Lupparelli, Giovanni M. Marchetti, Veronica Vinciotti
File in questo prodotto:
File Dimensione Formato  
978-3-031-96303-2_35.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 223.89 kB
Formato Adobe PDF
223.89 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1428355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact