To unravel the complex interactions between microplastics (MPs), plants, and pathogens, Arabidopsis thaliana plants were grown for 3 weeks in soils containing polyethylene terephthalate (PET) or polyvinyl chloride (PVC) MPs (0.2% and 0.5% w/w), and leaves were then exposed to the PAMP (Pathogen-Associated Molecular Pattern) protein cerato-platanin (CP) or Botrytis cinerea conidia. PET caused a stimulation of stomatal conductance, and PVC decreased the aboveground biomass of A. thaliana plants. PVC (0.2%) triggered a primed state in A. thaliana, enhancing its response to B. cinerea infection and cerato-platanin. This was demonstrated by decreased lesion size, enhanced ROS generation, and elevated camalexin synthesis following PAMP elicitation, and increased levels of defensive isothiocyanate and phenylpropanoid metabolites. Our results indicate that MPs also affect soil structure, ionome balance, and specialised metabolite accumulation. However, MPs did not provide an unambiguous response, underscoring challenges in formulating a model of plant response to MPs when exposed to pathogens.

Microplastics in the Soil at Sub‐Toxic Concentrations Cause Metabolic Changes Decreasing Fungal Pathogen Susceptibility in Arabidopsis thaliana / Dainelli, Marco; Cicchi, Costanza; Baccelli, Ivan; Boutet, Stéphanie; Colzi, Ilaria; Coppi, Andrea; Luti, Simone; Pignattelli, Sara; Pollastri, Susanna; Loreto, Francesco; Pazzagli, Luigia; Corso, Massimiliano; Gonnelli, Cristina. - In: PHYSIOLOGIA PLANTARUM. - ISSN 0031-9317. - STAMPA. - 177:(2025), pp. e70312.0-e70312.0. [10.1111/ppl.70312]

Microplastics in the Soil at Sub‐Toxic Concentrations Cause Metabolic Changes Decreasing Fungal Pathogen Susceptibility in Arabidopsis thaliana

Dainelli, Marco
;
Cicchi, Costanza;Baccelli, Ivan;Colzi, Ilaria;Coppi, Andrea;Luti, Simone;Pignattelli, Sara;Pollastri, Susanna;Pazzagli, Luigia;Gonnelli, Cristina
2025

Abstract

To unravel the complex interactions between microplastics (MPs), plants, and pathogens, Arabidopsis thaliana plants were grown for 3 weeks in soils containing polyethylene terephthalate (PET) or polyvinyl chloride (PVC) MPs (0.2% and 0.5% w/w), and leaves were then exposed to the PAMP (Pathogen-Associated Molecular Pattern) protein cerato-platanin (CP) or Botrytis cinerea conidia. PET caused a stimulation of stomatal conductance, and PVC decreased the aboveground biomass of A. thaliana plants. PVC (0.2%) triggered a primed state in A. thaliana, enhancing its response to B. cinerea infection and cerato-platanin. This was demonstrated by decreased lesion size, enhanced ROS generation, and elevated camalexin synthesis following PAMP elicitation, and increased levels of defensive isothiocyanate and phenylpropanoid metabolites. Our results indicate that MPs also affect soil structure, ionome balance, and specialised metabolite accumulation. However, MPs did not provide an unambiguous response, underscoring challenges in formulating a model of plant response to MPs when exposed to pathogens.
2025
177
0
0
Dainelli, Marco; Cicchi, Costanza; Baccelli, Ivan; Boutet, Stéphanie; Colzi, Ilaria; Coppi, Andrea; Luti, Simone; Pignattelli, Sara; Pollastri, Susann...espandi
File in questo prodotto:
File Dimensione Formato  
121) physiologia plantarum, 2025.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 4.95 MB
Formato Adobe PDF
4.95 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1428933
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact