Proportion or compositional data are a kind of data in which the individual components represent parts of a whole and, therefore, are constrained by a constant sum. We discuss kernel density estimation for compositional variables observed with errors by using a deconvolution approach. An application of the proposed method in social sciences is considered.

A Note on Density Estimation for Proportion Data Observed with Errors / Di Marzio, Marco; Fensore, Stefania; Panzera, Agnese; Passamonti, Chiara. - STAMPA. - (2025), pp. 153-158. (Intervento presentato al convegno SIS 2025) [10.1007/978-3-031-95995-0_26].

A Note on Density Estimation for Proportion Data Observed with Errors

Panzera, Agnese
;
2025

Abstract

Proportion or compositional data are a kind of data in which the individual components represent parts of a whole and, therefore, are constrained by a constant sum. We discuss kernel density estimation for compositional variables observed with errors by using a deconvolution approach. An application of the proposed method in social sciences is considered.
2025
Statistics for Innovation III
SIS 2025
Di Marzio, Marco; Fensore, Stefania; Panzera, Agnese; Passamonti, Chiara
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1433732
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact