This study evaluates the use of biochar as a sustainable substitute to peat in the soilless cultivation of rocket salad (Eruca vesicaria (L.) Cav.). Biochar was added to a peat-based substrate at concentrations of 0% (control), 5%, 10%, 20%, 40%, and 70% v/v to assess its effects on seed germination, plant growth, mineral content, and nitrate accumulation. The results show that biochar concentrations up to 40% v/v maintained germination rates above 80%, similar to the control, while higher concentrations (70% v/v) drastically reduced germination to 29% and entirely compromised plant development and growth. A moderate biochar concentration (20%) had a positive effect on fresh weight and leaf area, while maintaining comparable levels of nutrient uptake, chlorophyll, and flavonols. In addition, biochar-enriched substrates (≥20% v/v) reduced nitrate accumulation in leaves by 26–30%, addressing a critical quality and safety concern. A high biochar content (≥40% v/v) altered the substrate’s physicochemical properties, including pH, porosity, and electrical conductivity, negatively affecting plant growth (a 38% reduction in plant growth and 42% in leaf area) and increasing heavy metal concentrations, such as that of zinc (~30%). These findings suggest that incorporating up to 20% v/v biochar in soilless substrates offers a sustainable alternative to peat, supporting rocket salad performance and improving leaf nitrate quality, without compromising yield or safety.

Assessing Seed Germination and Plant Growth of Eruca vesicaria (L.) Cav. Cultivated in Biochar-Enriched Substrates / Bini, Lorenzo; Biricolti, Stefano; Lenzi, Anna; Del Bubba, Massimo; Petrucci, William Antonio; Giordani, Edgardo. - In: AGRICULTURE. - ISSN 2077-0472. - ELETTRONICO. - 15:(2025), pp. 302.0-302.18. [10.3390/agriculture15030302]

Assessing Seed Germination and Plant Growth of Eruca vesicaria (L.) Cav. Cultivated in Biochar-Enriched Substrates

Bini, Lorenzo;Biricolti, Stefano
;
Lenzi, Anna;Del Bubba, Massimo;Petrucci, William Antonio;Giordani, Edgardo
2025

Abstract

This study evaluates the use of biochar as a sustainable substitute to peat in the soilless cultivation of rocket salad (Eruca vesicaria (L.) Cav.). Biochar was added to a peat-based substrate at concentrations of 0% (control), 5%, 10%, 20%, 40%, and 70% v/v to assess its effects on seed germination, plant growth, mineral content, and nitrate accumulation. The results show that biochar concentrations up to 40% v/v maintained germination rates above 80%, similar to the control, while higher concentrations (70% v/v) drastically reduced germination to 29% and entirely compromised plant development and growth. A moderate biochar concentration (20%) had a positive effect on fresh weight and leaf area, while maintaining comparable levels of nutrient uptake, chlorophyll, and flavonols. In addition, biochar-enriched substrates (≥20% v/v) reduced nitrate accumulation in leaves by 26–30%, addressing a critical quality and safety concern. A high biochar content (≥40% v/v) altered the substrate’s physicochemical properties, including pH, porosity, and electrical conductivity, negatively affecting plant growth (a 38% reduction in plant growth and 42% in leaf area) and increasing heavy metal concentrations, such as that of zinc (~30%). These findings suggest that incorporating up to 20% v/v biochar in soilless substrates offers a sustainable alternative to peat, supporting rocket salad performance and improving leaf nitrate quality, without compromising yield or safety.
2025
15
0
18
Goal 2: Zero hunger
Goal 12: Responsible consumption and production
Goal 6: Clean water and sanitation
Goal 13: Climate action
Goal 15: Life on land
Bini, Lorenzo; Biricolti, Stefano; Lenzi, Anna; Del Bubba, Massimo; Petrucci, William Antonio; Giordani, Edgardo
File in questo prodotto:
File Dimensione Formato  
Bini rocket 2025.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1434052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact