The HEliospheric pioNeer for sOlar and interplanetary threats defeNce (HENON) mission is a CubeSat Space Weather mission, designed to operate in a Sun-Earth Distant Retrograde Orbit (DRO) at more than 10 million km from the Earth. HENON will embark payloads tailored for Space Weather (SWE) observations, i.e., a high-resolution energetic particle radiation monitor, a Faraday cup, and a magnetometer enabling it to provide quasi-real-time monitoring of the interplanetary conditions in deep space. HENON has many important goals, such as demonstrating CubeSat capabilities in deep space, including long-duration electric propulsion with periodic telemetry and command, and robust attitude control for deep-space operations. It will pave the way for a future fleet of spacecraft on DROs, providing continuous near real-time measurements for SWE forecasting. This paper focuses on the mission analysis performed for phase A/B, with the main goal of defining a baseline transfer trajectory to a heliocentric DRO in co-orbital motion with the Earth. The proposed transfer leverages a rideshare opportunity on a mission escaping Earth’s gravity field, most likely one headed toward the Sun–Earth L2 region, and relies exclusively on on-board electric propulsion to reach deep space, making it a pioneering demonstration of this approach and the technology. Under appropriate assumptions on the electric propulsion system performances, s/c mass and propellant budget, it will be shown that the HENON target DRO can be reached in about 1 year, taking into account also periodic interruptions of thrusting to allow for Telemetry, Tracking and Command.
Mission analysis for the HENON CubeSat mission to a large Sun-Earth distant retrograde orbit / Cicalò, Stefano; Alessi, Elisa Maria; Provinciali, Lorenzo; Amabili, Paride; Saita, Giorgio; Calcagno, Davide; Marcucci, Maria Federica; Laurenza, Monica; Zimbardo, Gaetano; Landi, Simone; Walker, Roger; Khan, Michael. - In: ASTROPHYSICS AND SPACE SCIENCE. - ISSN 0004-640X. - ELETTRONICO. - 370:(2025), pp. 83.0-83.0. [10.1007/s10509-025-04473-0]
Mission analysis for the HENON CubeSat mission to a large Sun-Earth distant retrograde orbit
Landi, SimoneMembro del Collaboration Group
;
2025
Abstract
The HEliospheric pioNeer for sOlar and interplanetary threats defeNce (HENON) mission is a CubeSat Space Weather mission, designed to operate in a Sun-Earth Distant Retrograde Orbit (DRO) at more than 10 million km from the Earth. HENON will embark payloads tailored for Space Weather (SWE) observations, i.e., a high-resolution energetic particle radiation monitor, a Faraday cup, and a magnetometer enabling it to provide quasi-real-time monitoring of the interplanetary conditions in deep space. HENON has many important goals, such as demonstrating CubeSat capabilities in deep space, including long-duration electric propulsion with periodic telemetry and command, and robust attitude control for deep-space operations. It will pave the way for a future fleet of spacecraft on DROs, providing continuous near real-time measurements for SWE forecasting. This paper focuses on the mission analysis performed for phase A/B, with the main goal of defining a baseline transfer trajectory to a heliocentric DRO in co-orbital motion with the Earth. The proposed transfer leverages a rideshare opportunity on a mission escaping Earth’s gravity field, most likely one headed toward the Sun–Earth L2 region, and relies exclusively on on-board electric propulsion to reach deep space, making it a pioneering demonstration of this approach and the technology. Under appropriate assumptions on the electric propulsion system performances, s/c mass and propellant budget, it will be shown that the HENON target DRO can be reached in about 1 year, taking into account also periodic interruptions of thrusting to allow for Telemetry, Tracking and Command.| File | Dimensione | Formato | |
|---|---|---|---|
|
s10509-025-04473-0.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
2.49 MB
Formato
Adobe PDF
|
2.49 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



