Excessive tree mortality is a global concern and remains poorly understood as it is a complex phenomenon. We lack global and temporally continuous coverage on tree mortality data. Ground-based observations on tree mortality, e.g., derived from national inventories, are very sparse, and may not be standardized or spatially explicit. Earth observation data, combined with supervised machine learning, offer a promising approach to map overstory tree mortality in a consistent manner over space and time. However, global-scale machine learning requires broad training data covering a wide range of environmental settings and forest types. Low altitude observation platforms (e.g., drones or airplanes) provide a cost-effective source of training data by capturing high-resolution orthophotos of overstory tree mortality events at centimeter-scale resolution. Here, we introduce deadtrees.earth, an open-access platform hosting more than two thousand centimeter-resolution orthophotos, covering more than 1,000,000 ha, of which more than 58,000 ha are manually annotated with live/dead tree classifications. This community-sourced and rigorously curated dataset can serve as a comprehensive reference dataset to uncover tree mortality patterns from local to global scales using spacebased Earth observation data and machine learning models. This will provide the basis to attribute tree mortality patterns to environmental changes or project tree mortality dynamics to the future. The open nature of deadtrees.earth, together with its curation of high-quality, spatially representative, and ecologically diverse data will continuously increase our capacity to uncover and understand tree mortality dynamics

deadtrees.earth — An open-access and interactive database for centimeter-scale aerial imagery to uncover global tree mortality dynamics / Mosig, Clemens; Vajna-Jehle, Janusch; Mahecha, Miguel D.; Cheng, Yan; Hartmann, Henrik; Montero, David; Junttila, Samuli; Horion, Stéphanie; Schwenke, Mirela Beloiu; Koontz, Michael J.; Maulud, Khairul Nizam Abdul; Adu-Bredu, Stephen; Al-Halbouni, Djamil; Ali, Muhammad; Allen, Matthew; Altman, Jan; Amorós, Lot; Angiolini, Claudia; Astrup, Rasmus; Awada, Hassan; Barrasso, Caterina; Bartholomeus, Harm; Beck, Pieter S.A.; Bozzini, Aurora; Braun-Wimmer, Joshua; Brede, Benjamin; Breunig, Fabio Marcelo; Brugnaro, Stefano; Buras, Allan; Burchard-Levine, Vicente; Camarero, Jesús Julio; Candotti, Anna; Capuder, Luka; Carrieri, Erik; Centritto, Mauro; Chirici, Gherardo; Cloutier, Myriam; Conciani, Dhemerson; Cushman, KC; Dalling, James W.; Dao, Phuong D.; Dempewolf, Jan; Denter, Martin; Dogotari, Marcel; Díaz-Delgado, Ricardo; Ecke, Simon; Eichel, Jana; Eltner, Anette; Fabbri, André; Fabi, Maximilian; Fassnacht, Fabian; Ferreira, Matheus Pinheiro; Fischer, Fabian Jörg; Frey, Julian; Frick, Annett; Fuentes, Jose; Ganz, Selina; Garbarino, Matteo; García, Milton; Gassilloud, Matthias; Gazol, Antonio; Gea-Izquierdo, Guillermo; Gerberding, Kilian; Ghasemi, Marziye; Giannetti, Francesca; Gillan, Jeffrey; Gonzalez, Roy; Gosper, Carl; Greene, Terry; Greinwald, Konrad; Grieve, Stuart; Große-Stoltenberg, André; Gutierrez, Jesus Aguirre; Göritz, Anna; Hajek, Peter; Hedding, David; Hempel, Jan; Heremans, Stien; Hernández, Melvin; Heurich, Marco; Honkavaara, Eija; Höfle, Bernhard; Jackisch, Robert; Jucker, Tommaso; Kalwij, Jesse M.; Kepfer-Rojas, Sebastian; Khatri-Chhetri, Pratima; Kleinebecker, Till; Klemmt, Hans-Joachim; Klouček, Tomáš; Koivumäki, Niko; Kolagani, Nagesh; Komárek, Jan; Korznikov, Kirill; Kraszewski, Bartłomiej; Kruse, Stefan; Krüger, Robert; Kuechly, Helga; Kwong, Ivan H.Y.; Laliberté, Etienne; Langan, Liam; Latifi, Hooman; Leal-Medina, Claudia; Lehmann, Jan R.K.; Li, Linyuan; Lines, Emily; Lisiewicz, Maciej; Lopatin, Javier; Lucieer, Arko; Ludwig, Antonia; Ludwig, Marvin; Lyytikäinen-Saarenmaa, Päivi; Ma, Qin; Mansuy, Nicolas; Peña, José Manuel; Marino, Giovanni; Maroschek, Michael; Martín, M.Pilar; Martín-Benito, Darío; Matham, Pavan; Mazzoni, Sabrina; Meloni, Fabio; Menzel, Annette; Meyer, Hanna; Miraki, Mojdeh; Moreno, Gerardo; Moreno-Fernández, Daniel; Muller-Landau, Helene C.; Mälicke, Mirko; Möhring, Jakobus; Müllerova, Jana; Naidu, Setti Sridhara; Nardi, Davide; Neumeier, Paul; Nita, Mihai Daniel; Näsi, Roope; Oppgenoorth, Lars; Orunbaev, Sagynbek; Palmer, Melanie; Paul, Thomas; Pfenning, Mattis; Potts, Alastair; Prasanna, Gudala Laxmi; Prober, Suzanne; Puliti, Stefano; Pérez-Luque, Antonio J.; Pérez-Priego, Oscar; Reudenbach, Chris; Revuelto, Jesús; Rivas-Torres, Gonzalo; Roberge, Philippe; Roggero, Pier Paolo; Rossi, Christian; Ruehr, Nadine Katrin; Ruiz-Benito, Paloma; Runge, Christian Mestre; Satta, Gabriele Giuseppe Antonio; Scanu, Bruno; Scherer-Lorenzen, Michael; Schiefer, Felix; Schiller, Christopher; Schladebach, Jacob; Schmehl, Marie-Therese; Schmid, Jonathan; Schmidt, Tristan Alexander; Schwarz, Selina; Seidl, Rupert; Seifert, Thomas; Barba, Ana Seifert; Shafeian, Elham; Shapiro, Aurélie; de Simone, Leopoldo; Sohrabi, Hormoz; Soltani, Salim; Sotomayor, Laura; Sparrow, Ben; Steer, Benjamin S.C.; Stenson, Matt; Stöckigt, Benjamin; Su, Yanjun; Suomalainen, Juha; Tamudo, Elisa; Barbieri, Mauro J. Tognetti; Tomelleri, Enrico; Torresani, Michele; Trepekli, Katerina; Ullah, Saif; Ullah, Sami; Umlauft, Josefine; Vargas-Ramírez, Nicolás; Vatandaslar, Can; Visacki, Vladimir; Volpi, Michele; Vásquez, Vicente; Wallis, Christine; Weinstein, Ben; Weiser, Hannah; Wich, Serge; Ximena, Tagle Casapia; Zarco-Tejada, Pablo J.; Zdunic, Katherine; Zielewska-Büttner, Katarzyna; de Oliveira, Raquel Alves; van Wagtendonk, Liz; von Dosky, Vincent; Kattenborn, Teja. - In: REMOTE SENSING OF ENVIRONMENT. - ISSN 0034-4257. - ELETTRONICO. - 332:(2026), pp. 115027.0-115027.0. [10.1016/j.rse.2025.115027]

deadtrees.earth — An open-access and interactive database for centimeter-scale aerial imagery to uncover global tree mortality dynamics

Chirici, Gherardo
Data Curation
;
Giannetti, Francesca
Writing – Review & Editing
;
2026

Abstract

Excessive tree mortality is a global concern and remains poorly understood as it is a complex phenomenon. We lack global and temporally continuous coverage on tree mortality data. Ground-based observations on tree mortality, e.g., derived from national inventories, are very sparse, and may not be standardized or spatially explicit. Earth observation data, combined with supervised machine learning, offer a promising approach to map overstory tree mortality in a consistent manner over space and time. However, global-scale machine learning requires broad training data covering a wide range of environmental settings and forest types. Low altitude observation platforms (e.g., drones or airplanes) provide a cost-effective source of training data by capturing high-resolution orthophotos of overstory tree mortality events at centimeter-scale resolution. Here, we introduce deadtrees.earth, an open-access platform hosting more than two thousand centimeter-resolution orthophotos, covering more than 1,000,000 ha, of which more than 58,000 ha are manually annotated with live/dead tree classifications. This community-sourced and rigorously curated dataset can serve as a comprehensive reference dataset to uncover tree mortality patterns from local to global scales using spacebased Earth observation data and machine learning models. This will provide the basis to attribute tree mortality patterns to environmental changes or project tree mortality dynamics to the future. The open nature of deadtrees.earth, together with its curation of high-quality, spatially representative, and ecologically diverse data will continuously increase our capacity to uncover and understand tree mortality dynamics
2026
332
0
0
Mosig, Clemens; Vajna-Jehle, Janusch; Mahecha, Miguel D.; Cheng, Yan; Hartmann, Henrik; Montero, David; Junttila, Samuli; Horion, Stéphanie; Schwenke,...espandi
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0034425725004316-main.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Creative commons
Dimensione 6.54 MB
Formato Adobe PDF
6.54 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1438387
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact