The composition of exhaled breath derives from an intricate combination of normal and abnormal physiological processes that are modified by the consumption of food and beverages, circadian rhythms, bacterial infections, and genetics as well as exposure to xenobiotics. This complexity, which results wide intra- and inter-individual variability and is further influenced by sampling conditions, hinders the identification of specific biomarkers and makes it difficult to differentiate between pathological and nominally healthy subjects. The identification of a 'normal' breath composition and the relative influence of the aforementioned parameters would make breath analyses much faster for diagnostic applications. We thus compared, for the first time, the breath composition of age-matched volunteers following a vegan and a Mediterranean omnivorous diet in order to evaluate the impact of diet on breath composition. Mixed breath was collected from 38 nominally healthy volunteers who were asked to breathe into a 2 l handmade Nalophan bag. Exhalation flow rate and carbon dioxide values were monitored during breath sampling. An aliquot (100 ml) of breath was loaded into a sorbent tube (250 mg of Tenax GR, 60/80 mesh) before being analyzed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Breath profiling using TD-GC-MS analysis identified five compounds (methanol, 1-propanol, pentane, hexane, and hexanal), thus enabling differentiation between samples collected from the different group members. Principal component analysis showed a clear separation between groups, suggesting that breath analysis could be used to study the influence of dietary habits in the fields of nutrition and metabolism. Surprisingly, one Italian woman and her brother showed extremely low breath isoprene levels (about 5 pbv), despite their normal lipidic profile and respiratory data, such as flow rate and pCO2. Further investigations to reveal the reasons behind low isoprene levels in breath would help reveal the origin of isoprene in breath.

Effects of long-term vegan diet on breath composition / Biagini D.; Fusi J.; Vezzosi A.; Oliveri P.; Ghimenti S.; Lenzi A.; Salvo P.; Daniele S.; Scarfo G.; Vivaldi F.; Bonini A.; Martini C.; Franzoni F.; Di Francesco F.; Lomonaco T.. - In: JOURNAL OF BREATH RESEARCH. - ISSN 1752-7155. - ELETTRONICO. - 16:(2022), p. 026004.026004. [10.1088/1752-7163/ac4d41]

Effects of long-term vegan diet on breath composition

Bonini A.;
2022

Abstract

The composition of exhaled breath derives from an intricate combination of normal and abnormal physiological processes that are modified by the consumption of food and beverages, circadian rhythms, bacterial infections, and genetics as well as exposure to xenobiotics. This complexity, which results wide intra- and inter-individual variability and is further influenced by sampling conditions, hinders the identification of specific biomarkers and makes it difficult to differentiate between pathological and nominally healthy subjects. The identification of a 'normal' breath composition and the relative influence of the aforementioned parameters would make breath analyses much faster for diagnostic applications. We thus compared, for the first time, the breath composition of age-matched volunteers following a vegan and a Mediterranean omnivorous diet in order to evaluate the impact of diet on breath composition. Mixed breath was collected from 38 nominally healthy volunteers who were asked to breathe into a 2 l handmade Nalophan bag. Exhalation flow rate and carbon dioxide values were monitored during breath sampling. An aliquot (100 ml) of breath was loaded into a sorbent tube (250 mg of Tenax GR, 60/80 mesh) before being analyzed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Breath profiling using TD-GC-MS analysis identified five compounds (methanol, 1-propanol, pentane, hexane, and hexanal), thus enabling differentiation between samples collected from the different group members. Principal component analysis showed a clear separation between groups, suggesting that breath analysis could be used to study the influence of dietary habits in the fields of nutrition and metabolism. Surprisingly, one Italian woman and her brother showed extremely low breath isoprene levels (about 5 pbv), despite their normal lipidic profile and respiratory data, such as flow rate and pCO2. Further investigations to reveal the reasons behind low isoprene levels in breath would help reveal the origin of isoprene in breath.
2022
16
026004
Biagini D.; Fusi J.; Vezzosi A.; Oliveri P.; Ghimenti S.; Lenzi A.; Salvo P.; Daniele S.; Scarfo G.; Vivaldi F.; Bonini A.; Martini C.; Franzoni F.; D...espandi
File in questo prodotto:
File Dimensione Formato  
Biagini+et+al_2022_J._Breath_Res._10.1088_1752-7163_ac4d41.pdf

Accesso chiuso

Licenza: Tutti i diritti riservati
Dimensione 347.78 kB
Formato Adobe PDF
347.78 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1438457
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact