We consider the following problem $$ Delta_p u +la u +f(u,r)=0 $$ $$u>0 ; extrm{ in $B$, } quad extrm{ and } quad u=0 extrm{ on $; partial B$.} $$ where $B$ is the unitary ball in $mathbb{R}^n$. Merle and Peletier considered the classical Laplace case $p=2$, and proved the existence of a unique value $la_0^*$ for which a radial singular positive solution exists, assuming $f(u,r)=u^{q-1}$ and $q>2^*:=rac{2n}{n-2}$. Then Dolbeault and Flores proved that, if $q>2^*$ but $q$ is smaller than the Joseph-Lundgren exponent $sigma^*$, then there is an unbounded sequence of radial positive classical solutions for (1), which accumulate at $la=la_0^*$, again for $p=2$.

Phase plane analysis for radial solutions to supercritical quasilinear elliptic equations in a ball / Flores Isabel; Franca Matteo. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 125:(2015), pp. 128-149. [10.1016/j.na.2015.04.015]

Phase plane analysis for radial solutions to supercritical quasilinear elliptic equations in a ball

Franca Matteo
2015

Abstract

We consider the following problem $$ Delta_p u +la u +f(u,r)=0 $$ $$u>0 ; extrm{ in $B$, } quad extrm{ and } quad u=0 extrm{ on $; partial B$.} $$ where $B$ is the unitary ball in $mathbb{R}^n$. Merle and Peletier considered the classical Laplace case $p=2$, and proved the existence of a unique value $la_0^*$ for which a radial singular positive solution exists, assuming $f(u,r)=u^{q-1}$ and $q>2^*:=rac{2n}{n-2}$. Then Dolbeault and Flores proved that, if $q>2^*$ but $q$ is smaller than the Joseph-Lundgren exponent $sigma^*$, then there is an unbounded sequence of radial positive classical solutions for (1), which accumulate at $la=la_0^*$, again for $p=2$.
2015
125
128
149
Flores Isabel; Franca Matteo
File in questo prodotto:
File Dimensione Formato  
DolFloDefelse.pdf

Accesso chiuso

Licenza: Solo lettura
Dimensione 252.73 kB
Formato Adobe PDF
252.73 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1438832
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact