Using topological methods, we study the structure of the set of forced oscillations of a class of parametric, implicit ordinary differential equations with a generalized $\Phi$-Laplacian type term. We work in the Carath\'eodory setting. Under suitable assumptions, involving merely the Brouwer degree in Euclidean spaces, we obtain global bifurcation results. In some illustrative examples we provide a visual representation of the bifurcating set.

Forced oscillations for generalized $Φ$-Laplacian equations with Carathéodory perturbations / Alessandro Calamai; Maria Patrizia Pera; Marco Spadini. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 1793-6683. - STAMPA. - .:(In corso di stampa), pp. 0-0.

Forced oscillations for generalized $Φ$-Laplacian equations with Carathéodory perturbations

Maria Patrizia Pera
Membro del Collaboration Group
;
Marco Spadini
Membro del Collaboration Group
In corso di stampa

Abstract

Using topological methods, we study the structure of the set of forced oscillations of a class of parametric, implicit ordinary differential equations with a generalized $\Phi$-Laplacian type term. We work in the Carath\'eodory setting. Under suitable assumptions, involving merely the Brouwer degree in Euclidean spaces, we obtain global bifurcation results. In some illustrative examples we provide a visual representation of the bifurcating set.
In corso di stampa
.
0
0
Goal 17: Partnerships for the goals
Alessandro Calamai; Maria Patrizia Pera; Marco Spadini
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1439032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact