This study examines the influence of printing parameters and filament composition on the mechanical properties of 3D printed parts, building upon prior research in fused deposition modeling. Two combinations of printing parameters, 75% infill, 0° orientation, four outer shells, with either gyroid and 3D Honeycomb infill patterns—were analyzed across eleven materials, including acrylonitrile butadiene styrene, polylactic acid, polylactic acid-based composites, polyethylene terephthalate glycol, and high-impact polystyrene. Tensile, compression, and bending tests were performed on the printed specimens to determine stiffness and elastic modulus. Each material demonstrated different levels of variability and sensitivity to printing parameters under the various loading conditions, emphasizing that no single configuration is optimal across all scenarios. For example, the gyroid pattern led to increases up to ~35% in bending modules for common thermoplastic filaments and ~30% for stone-filled polymers, while in tensile stiffness, variations between infill patterns remained below 5% for other conventional polymers. These findings underline the load-specific nature of optimal parameter combinations and the influence of material-specific characteristics, such as filler content or microstructural homogeneity. This study provides quantitative insights that can support application-driven parameter selection in additive manufacturing, offering a comparative dataset across widely used and emerging filaments.

Comparative Analysis of the Mechanical Properties of Eleven 3D Printing Filaments Under Different Printing Parameters / Mencarelli, Marta; Puggelli, Luca; Innocenti, Bernardo; Volpe, Yary. - In: APPLIED MECHANICS. - ISSN 2673-3161. - ELETTRONICO. - 6:(2025), pp. 70.0-70.0. [10.3390/applmech6030070]

Comparative Analysis of the Mechanical Properties of Eleven 3D Printing Filaments Under Different Printing Parameters

Mencarelli, Marta
;
Puggelli, Luca;Volpe, Yary
2025

Abstract

This study examines the influence of printing parameters and filament composition on the mechanical properties of 3D printed parts, building upon prior research in fused deposition modeling. Two combinations of printing parameters, 75% infill, 0° orientation, four outer shells, with either gyroid and 3D Honeycomb infill patterns—were analyzed across eleven materials, including acrylonitrile butadiene styrene, polylactic acid, polylactic acid-based composites, polyethylene terephthalate glycol, and high-impact polystyrene. Tensile, compression, and bending tests were performed on the printed specimens to determine stiffness and elastic modulus. Each material demonstrated different levels of variability and sensitivity to printing parameters under the various loading conditions, emphasizing that no single configuration is optimal across all scenarios. For example, the gyroid pattern led to increases up to ~35% in bending modules for common thermoplastic filaments and ~30% for stone-filled polymers, while in tensile stiffness, variations between infill patterns remained below 5% for other conventional polymers. These findings underline the load-specific nature of optimal parameter combinations and the influence of material-specific characteristics, such as filler content or microstructural homogeneity. This study provides quantitative insights that can support application-driven parameter selection in additive manufacturing, offering a comparative dataset across widely used and emerging filaments.
2025
6
0
0
Mencarelli, Marta; Puggelli, Luca; Innocenti, Bernardo; Volpe, Yary
File in questo prodotto:
File Dimensione Formato  
Comparative Analysis of the Mechanical Properties of Eleven 3D Printing Filaments Under Different Printing Parameters.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1439541
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact