A spanner of a temporal graph is a subset of edges that preserves connectivity over time between vertices. A minimal spanner is one in which no additional edges can be removed without breaking this connectivity. Our focus is on enumerating minimal spanners for a given temporal graph. We explore several variations of this problem based on the type of connectivity that must be maintained, ranging from one-to-all connectivity to one-to-all-to-one, many-to-all, and finally all-to-all connectivity. We establish that these problems become progressively harder: (i) We present a polynomial-delay enumeration algorithm for one-to-all connectivity; (ii) We prove Dual-hardness for both one-toall-to-one and many-to-all connectivity, even in the restricted case of two-to-all; (iii) Finally, for all-to-all connectivity, we show that enumeration cannot be performed in output-polynomial time unless P = NP.
Spanner Enumeration for Temporal Graphs / Kazuhiro Kurita; Andrea Marino; Jason Schoeters; Takeaki Uno. - ELETTRONICO. - 330:(2025), pp. 1-21. ( 4th Symposium on Algorithmic Foundations of Dynamic Networks, SAND 2025 gbr 2025) [10.4230/lipics.sand.2025.9].
Spanner Enumeration for Temporal Graphs
Andrea Marino;Jason Schoeters;Takeaki Uno
2025
Abstract
A spanner of a temporal graph is a subset of edges that preserves connectivity over time between vertices. A minimal spanner is one in which no additional edges can be removed without breaking this connectivity. Our focus is on enumerating minimal spanners for a given temporal graph. We explore several variations of this problem based on the type of connectivity that must be maintained, ranging from one-to-all connectivity to one-to-all-to-one, many-to-all, and finally all-to-all connectivity. We establish that these problems become progressively harder: (i) We present a polynomial-delay enumeration algorithm for one-to-all connectivity; (ii) We prove Dual-hardness for both one-toall-to-one and many-to-all connectivity, even in the restricted case of two-to-all; (iii) Finally, for all-to-all connectivity, we show that enumeration cannot be performed in output-polynomial time unless P = NP.| File | Dimensione | Formato | |
|---|---|---|---|
|
LIPIcs.SAND.2025.9 (1).pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



