Progress in gravitational-wave (GW) astronomy depends upon having sensitive detectors with good data quality. Since the end of the Laser Interferometer Gravitational-Wave Observatory-Virgo-KAGRA third Observing run in March 2020, detector-characterization efforts have lead to increased sensitivity of the detectors, swifter validation of GW candidates and improved tools used for data-quality products. In this article, we discuss these efforts in detail and their impact on our ability to detect and study GWs. These include the multiple instrumental investigations that led to reduction in transient noise, along with the work to improve software tools used to examine the detectors data-quality. We end with a brief discussion on the role and requirements of detector characterization as the sensitivity of our detectors further improves in the future Observing runs.

LIGO Detector Characterization in the first half of the fourth Observing run / Soni S.; Berger B.K.; Davis D.; Di Renzo F.; Effler A.; Ferreira T.A.; Glanzer J.; Goetz E.; Gonzalez G.; Helmling-Cornell A.; Hughey B.; Huxford R.; Mannix B.; Mo G.; Nandi D.; Neunzert A.; Nichols S.; Pham K.; Renzini A.I.; Schofield R.M.S.; Stuver A.; Trevor M.; Alvarez-Lopez S.; Beda R.; Berry C.P.L.; Bhuiyan S.; Blagg L.; Bruntz R.; Callos S.; Chan M.; Charlton P.; Christensen N.; Connolly G.; Dhatri R.; Ding J.; Garg V.; Holley-Bockelmann K.; Hourihane S.; Jani K.; Janssens K.; Jarov S.; Knee A.M.; Lattal A.; Lecoeuche Y.; Littenberg T.; Liyanage A.; Lott B.; Macas R.; Malakar D.; McGowan K.; McIver J.; Millhouse M.; Nuttall L.; Nykamp D.; Ota I.; Rawcliffe C.; Scully B.; Tasson J.; Tejera A.; Thiele S.; Udall R.; Winborn C.; Yarbrough Z.; Zhang Z.; Zheng Y.; Abbott R.; Abouelfettouh I.; Adhikari R.X.; Ananyeva A.; Appert S.; Arai K.; Aritomi N.; Aston S.M.; Ball M.; Ballmer S.W.; Barker D.; Barsotti L.; Betzwieser J.; Billingsley G.; Biscans S.; Bode N.; Bonilla E.; Bossilkov V.; Branch A.; Brooks A.F.; Brown D.D.; Bryant J.; Cahillane C.; Cao H.; Capote E.; Clara F.; Collins J.; Compton C.M.; Cottingham R.; Coyne D.C.; Crouch R.; Csizmazia J.; Cullen T.J.; Dartez L.P.; Demos N.; Dohmen E.; Driggers J.C.; Dwyer S.E.; Ejlli A.; Etzel T.; Evans M.; Feicht J.; Frey R.; Frischhertz W.; Fritschel P.; Frolov V.V.; Fulda P.; Fyffe M.; Ganapathy D.; Gateley B.; Giaime J.A.; Giardina K.D.; Goetz R.; Goodwin-Jones A.W.; Gras S.; Gray C.; Griffith D.; Grote H.; Guidry T.; Hall E.D.; Hanks J.; Hanson J.; Heintze M.C.; Holland N.A.; Hoyland D.; Huang H.Y.; Inoue Y.; James A.L.; Jennings A.; Jia W.; Karat S.; Karki S.; Kasprzack M.; Kawabe K.; Kijbunchoo N.; King P.J.; Kissel J.S.; Komori K.; Kontos A.; Kumar R.; Kuns K.; Landry M.; Lantz B.; Laxen M.; Lee K.; Lesovsky M.; Llamas F.; Lormand M.; Loughlin H.A.; MacInnis M.; Makarem C.N.; Mansell G.L.; Martin R.M.; Mason K.; Matichard F.; Mavalvala N.; Maxwell N.; McCarrol G.; McCarthy R.; McClelland D.E.; McCormick S.; McCuller L.; McRae T.; Mera F.; Merilh E.L.; Meylahn F.; Mittleman R.; Moraru D.; Moreno G.; Mullavey A.; Nakano M.; Nelson T.J.N.; Notte J.; Oberling J.; O'Hanlon T.; Osthelder C.; Ottaway D.J.; Overmier H.; Parker W.; Pele A.; Pham H.; Pirello M.; Quetschke V.; Ramirez K.E.; Reyes J.; Richardson J.W.; Robinson M.; Rollins J.G.; Romel C.L.; Romie J.H.; Ross M.P.; Ryan K.; Sadecki T.; Sanchez A.; Sanchez E.J.; Sanchez L.E.; Savage R.L.; Schaetzl D.; Schiworski M.G.; Schnabel R.; Schwartz E.; Sellers D.; Shaffer T.; Short R.W.; Sigg D.; Slagmolen B.J.J.; Soike C.; Srivastava V.; Sun L.; Tanner D.B.; Thomas M.; Thomas P.; Thorne K.A.; Torrie C.I.; Traylor G.; Ubhi A.S.; Vajente G.; Vanosky J.; Vecchio A.; Veitch P.J.; Vibhute A.M.; von Reis E.R.G.; Warner J.; Weaver B.; Weiss R.; Whittle C.; Willke B.; Wipf C.C.; Xu V.A.; Yamamoto H.; Zhang L.; Zucker M.E.. - In: CLASSICAL AND QUANTUM GRAVITY. - ISSN 0264-9381. - ELETTRONICO. - 42:(2025), pp. 085016.0-085016.0. [10.1088/1361-6382/adc4b6]

LIGO Detector Characterization in the first half of the fourth Observing run

Di Renzo F.;Zheng Y.;Ball M.;Cao H.;Collins J.;Evans M.;Schwartz E.;
2025

Abstract

Progress in gravitational-wave (GW) astronomy depends upon having sensitive detectors with good data quality. Since the end of the Laser Interferometer Gravitational-Wave Observatory-Virgo-KAGRA third Observing run in March 2020, detector-characterization efforts have lead to increased sensitivity of the detectors, swifter validation of GW candidates and improved tools used for data-quality products. In this article, we discuss these efforts in detail and their impact on our ability to detect and study GWs. These include the multiple instrumental investigations that led to reduction in transient noise, along with the work to improve software tools used to examine the detectors data-quality. We end with a brief discussion on the role and requirements of detector characterization as the sensitivity of our detectors further improves in the future Observing runs.
2025
42
0
0
Soni S.; Berger B.K.; Davis D.; Di Renzo F.; Effler A.; Ferreira T.A.; Glanzer J.; Goetz E.; Gonzalez G.; Helmling-Cornell A.; Hughey B.; Huxford R.; ...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1439829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact