We prove that the first (nontrivial) Dirichlet eigenvalue of the Ornstein-Uhlenbeck operator $$ L(u)=\Delta u-\langle\nabla u,x\rangle\,, $$ as a function of the domain, is convex with respect to the Minkowski addition, and we characterize the equality cases in some classes of convex sets. We also prove that the corresponding (positive) eigenfunction is log-concave if the domain is convex.
The Brunn-Minkowski inequality for the first eigenvalue of the Ornstein-Uhlenbeck operator and log-concavity of the relevant eigenfunction / Andrea Colesanti, Elisa Francini, Galyna Livshyts, Paolo Salani. - In: ANALYSIS & PDE. - ISSN 2157-5045. - STAMPA. - -:(In corso di stampa), pp. 0-0.
The Brunn-Minkowski inequality for the first eigenvalue of the Ornstein-Uhlenbeck operator and log-concavity of the relevant eigenfunction
Andrea Colesanti;Elisa Francini;Galyna Livshyts;Paolo Salani
In corso di stampa
Abstract
We prove that the first (nontrivial) Dirichlet eigenvalue of the Ornstein-Uhlenbeck operator $$ L(u)=\Delta u-\langle\nabla u,x\rangle\,, $$ as a function of the domain, is convex with respect to the Minkowski addition, and we characterize the equality cases in some classes of convex sets. We also prove that the corresponding (positive) eigenfunction is log-concave if the domain is convex.| File | Dimensione | Formato | |
|---|---|---|---|
|
ColesantiFranciniLivshytsSalani2025AAM.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
256.59 kB
Formato
Adobe PDF
|
256.59 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



