We prove that the first (nontrivial) Dirichlet eigenvalue of the Ornstein-Uhlenbeck operator $$ L(u)=\Delta u-\langle\nabla u,x\rangle\,, $$ as a function of the domain, is convex with respect to the Minkowski addition, and we characterize the equality cases in some classes of convex sets. We also prove that the corresponding (positive) eigenfunction is log-concave if the domain is convex.

The Brunn-Minkowski inequality for the first eigenvalue of the Ornstein-Uhlenbeck operator and log-concavity of the relevant eigenfunction / Andrea Colesanti, Elisa Francini, Galyna Livshyts, Paolo Salani. - In: ANALYSIS & PDE. - ISSN 2157-5045. - STAMPA. - -:(In corso di stampa), pp. 0-0.

The Brunn-Minkowski inequality for the first eigenvalue of the Ornstein-Uhlenbeck operator and log-concavity of the relevant eigenfunction

Andrea Colesanti;Elisa Francini;Galyna Livshyts;Paolo Salani
In corso di stampa

Abstract

We prove that the first (nontrivial) Dirichlet eigenvalue of the Ornstein-Uhlenbeck operator $$ L(u)=\Delta u-\langle\nabla u,x\rangle\,, $$ as a function of the domain, is convex with respect to the Minkowski addition, and we characterize the equality cases in some classes of convex sets. We also prove that the corresponding (positive) eigenfunction is log-concave if the domain is convex.
In corso di stampa
-
0
0
Andrea Colesanti, Elisa Francini, Galyna Livshyts, Paolo Salani
File in questo prodotto:
File Dimensione Formato  
ColesantiFranciniLivshytsSalani2025AAM.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 256.59 kB
Formato Adobe PDF
256.59 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1439854
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact