OBJECTIVE: Systemic sclerosis (SSc) is characterized by early endothelial damage evolving to vascular desertification. Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 regulate specific steps in new vessel formation. We undertook this study to determine whether an alteration of the SDF-1/CXCR4 axis might be involved in the pathogenetic mechanisms following ischemic damage during SSc. METHODS: We enrolled 36 SSc patients and 15 controls. Skin biopsy samples were obtained from each subject, and the expression of SDF-1 and CXCR4 was assessed by immunohistochemistry, reverse transcription-polymerase chain reaction (RT-PCR), and Western blot analyses. Furthermore, isolated microvascular endothelial cells (MVECs) from 4 patients with diffuse cutaneous SSc (dcSSc) and 3 controls were analyzed for SDF-1 and CXCR4 by confocal laser scanning microscopy, RT-PCR, and Western blotting. RESULTS: SDF-1 and CXCR4 were up-regulated in the skin of patients with early (edematous) SSc, both in the diffuse and limited cutaneous forms, and progressively decreased, with the lowest expression in the latest phases of both SSc subsets. MVECs from patients with dcSSc expressed significantly higher amounts of both isoforms of SDF-1 in the early stage of disease, with a progressive reduction of SDF-1 and CXCR4 in later stages. On the surface of cultured MVECs from patients with dcSSc, SDF-1 and CXCR4 colocalized in polarized areas, suggesting that they are activated in vivo and that they are under strict genetic control to retain capping function. CONCLUSION: Due to its transient expression, SDF-1 could be considered a future therapeutic target to induce new vessel formation in SSc.

Differential expression of stromal cell-derived factor 1 and its receptor CXCR4 in the skin and endothelial cells of systemic sclerosis patients: Pathogenetic implications / P. CIPRIANI; A.F. MILIA; V. LIAKOULI; A. PACINI; M. MANETTI; A. MARRELLI; A. TOSCANO; E. PINGIOTTI; A. FULMINIS; S. GUIDUCCI; R. PERRICONE; B. KAHALEH; M. MATUCCI-CERINIC; L. IBBA-MANNESCHI; R. GIACOMELLI. - In: ARTHRITIS AND RHEUMATISM. - ISSN 0004-3591. - STAMPA. - 54:(2006), pp. 3022-3033. [10.1002/art.22047]

Differential expression of stromal cell-derived factor 1 and its receptor CXCR4 in the skin and endothelial cells of systemic sclerosis patients: Pathogenetic implications

PACINI, ALESSANDRA;MANETTI, MIRKO;GUIDUCCI, SERENA;MATUCCI CERINIC, MARCO;IBBA, LIDIA;
2006

Abstract

OBJECTIVE: Systemic sclerosis (SSc) is characterized by early endothelial damage evolving to vascular desertification. Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 regulate specific steps in new vessel formation. We undertook this study to determine whether an alteration of the SDF-1/CXCR4 axis might be involved in the pathogenetic mechanisms following ischemic damage during SSc. METHODS: We enrolled 36 SSc patients and 15 controls. Skin biopsy samples were obtained from each subject, and the expression of SDF-1 and CXCR4 was assessed by immunohistochemistry, reverse transcription-polymerase chain reaction (RT-PCR), and Western blot analyses. Furthermore, isolated microvascular endothelial cells (MVECs) from 4 patients with diffuse cutaneous SSc (dcSSc) and 3 controls were analyzed for SDF-1 and CXCR4 by confocal laser scanning microscopy, RT-PCR, and Western blotting. RESULTS: SDF-1 and CXCR4 were up-regulated in the skin of patients with early (edematous) SSc, both in the diffuse and limited cutaneous forms, and progressively decreased, with the lowest expression in the latest phases of both SSc subsets. MVECs from patients with dcSSc expressed significantly higher amounts of both isoforms of SDF-1 in the early stage of disease, with a progressive reduction of SDF-1 and CXCR4 in later stages. On the surface of cultured MVECs from patients with dcSSc, SDF-1 and CXCR4 colocalized in polarized areas, suggesting that they are activated in vivo and that they are under strict genetic control to retain capping function. CONCLUSION: Due to its transient expression, SDF-1 could be considered a future therapeutic target to induce new vessel formation in SSc.
2006
54
3022
3033
Goal 3: Good health and well-being for people
P. CIPRIANI; A.F. MILIA; V. LIAKOULI; A. PACINI; M. MANETTI; A. MARRELLI; A. TOSCANO; E. PINGIOTTI; A. FULMINIS; S. GUIDUCCI; R. PERRICONE; B. KAHALEH; M. MATUCCI-CERINIC; L. IBBA-MANNESCHI; R. GIACOMELLI
File in questo prodotto:
File Dimensione Formato  
A&R cipriani 2006.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/200017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 57
social impact