Small angle neutron scattering (SANS) and theological measurements have been used to study horse heart cytochrome C, a globular protein characterized by approximately spherical shape (a x b x b = 15 x 17 x 17 Angstrom(3)) with a molecular weight of 12 384 Da and a pI = 10.2. Two series of very concentrated protein solutions have been investigated at pD 5.4 and 11.0, respectively, the volume fraction of the protein spanning from 0.1 to 0.5. The Krieger-Dougherty model was applied to describe the relation between relative high shear viscosity of the solution and volume fraction of the protein at both pD in order to elucidate the charge effect on the interaction potential. The SANS intensity distributions at pD 5.4 were fitted using the GOCM model with an excellent agreement between the theory and experiments up to the volume fraction phi of 0.4. At pD 11.0 the intensity distribution at 0 = 0.1 can be fitted with a pure form factor (oblate ellipsoid), suggesting that under this condition the cytochrome C molecules are almost uncharged and preserve the native molecular size. Addition of salt induces the transformation from liquid to a gel. This is a result of formation of ordered fractal clusters internally as evident from appearance of a second interaction peak at very low Q (magnitude of the scattering vector). The appearance of the low Q peak is also accompanied by a strong increase in the relative viscosity. These phenomena taken together can be considered as the signature of the gelation process.

Viscoelastic and small angle neutron scattering studies of concentrated protein solutions / LONETTI B.; FRATINI E.; CHEN S. H.; P. BAGLIONI. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - STAMPA. - 6:(2004), pp. 1388-1395. [10.1039/b316144g]

Viscoelastic and small angle neutron scattering studies of concentrated protein solutions

LONETTI, BARBARA;FRATINI, EMILIANO;BAGLIONI, PIERO
2004

Abstract

Small angle neutron scattering (SANS) and theological measurements have been used to study horse heart cytochrome C, a globular protein characterized by approximately spherical shape (a x b x b = 15 x 17 x 17 Angstrom(3)) with a molecular weight of 12 384 Da and a pI = 10.2. Two series of very concentrated protein solutions have been investigated at pD 5.4 and 11.0, respectively, the volume fraction of the protein spanning from 0.1 to 0.5. The Krieger-Dougherty model was applied to describe the relation between relative high shear viscosity of the solution and volume fraction of the protein at both pD in order to elucidate the charge effect on the interaction potential. The SANS intensity distributions at pD 5.4 were fitted using the GOCM model with an excellent agreement between the theory and experiments up to the volume fraction phi of 0.4. At pD 11.0 the intensity distribution at 0 = 0.1 can be fitted with a pure form factor (oblate ellipsoid), suggesting that under this condition the cytochrome C molecules are almost uncharged and preserve the native molecular size. Addition of salt induces the transformation from liquid to a gel. This is a result of formation of ordered fractal clusters internally as evident from appearance of a second interaction peak at very low Q (magnitude of the scattering vector). The appearance of the low Q peak is also accompanied by a strong increase in the relative viscosity. These phenomena taken together can be considered as the signature of the gelation process.
2004
6
1388
1395
LONETTI B.; FRATINI E.; CHEN S. H.; P. BAGLIONI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/200588
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 60
social impact