Retina has long been considered less plastic than cortex or hippocampus, the very sites of experience-dependent plasticity. Now, we show that retinal development is responsive to the experience provided by an enriched environment (EE): the maturation of retinal acuity, which is a sensitive index of retinal circuitry development, is strongly accelerated in EE rats. This effect is present also in rats exposed to EE up to P10, that is before eye opening, suggesting that factors sufficient to trigger retinal acuity development are affected by EE during the first days of life. Brain derived neurotrophic factor (BDNF) is precociously expressed in the ganglion cell layer of EE with respect to non-EE rats and reduction of BDNF expression in EE animals counteracts EE effects on retinal acuity. Thus, EE controls the development of retinal circuitry, and this action depends on retinal BDNF expression.

Retinal functional development is sensitive to environmental enrichment: a role for BDNF / LANDI S; SALE A; N. BERARDI; VIEGI A; MAFFEI L; CENNI M. C. - In: THE FASEB JOURNAL. - ISSN 0892-6638. - STAMPA. - 21:(2006), pp. 130-139.

Retinal functional development is sensitive to environmental enrichment: a role for BDNF

BERARDI, NICOLETTA;
2006

Abstract

Retina has long been considered less plastic than cortex or hippocampus, the very sites of experience-dependent plasticity. Now, we show that retinal development is responsive to the experience provided by an enriched environment (EE): the maturation of retinal acuity, which is a sensitive index of retinal circuitry development, is strongly accelerated in EE rats. This effect is present also in rats exposed to EE up to P10, that is before eye opening, suggesting that factors sufficient to trigger retinal acuity development are affected by EE during the first days of life. Brain derived neurotrophic factor (BDNF) is precociously expressed in the ganglion cell layer of EE with respect to non-EE rats and reduction of BDNF expression in EE animals counteracts EE effects on retinal acuity. Thus, EE controls the development of retinal circuitry, and this action depends on retinal BDNF expression.
2006
21
130
139
LANDI S; SALE A; N. BERARDI; VIEGI A; MAFFEI L; CENNI M. C
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/202627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 74
social impact