We address the problem of estimating an unknown parameter vector x in a linear model y = Cx+v subject to the a priori information that the true parameter vector x belongs to a known convex polytope . The proposed estimator has the parametrized structure of the maximum a posteriori probability (MAP) estimator with prior Gaussian distribution, whose mean and covariance parameters are suitably designed via a linear matrix inequality approach so as to guarantee, for any x , an improvement of the mean-squared error (MSE) matrix over the least-squares (LS) estimator. It is shown that this approach outperforms existing “superefficient” estimators for constrained parameters based on different parametrized structures and/or shapes of the parameter membership region.
Estimation of constrained parameters with guaranteed MSE improvement / A. BENAVOLI; L. CHISCI; A. FARINA. - In: IEEE TRANSACTIONS ON SIGNAL PROCESSING. - ISSN 1053-587X. - STAMPA. - 55:(2007), pp. 1264-1274. [10.1109/TSP.2006.888094]
Estimation of constrained parameters with guaranteed MSE improvement
CHISCI, LUIGI;
2007
Abstract
We address the problem of estimating an unknown parameter vector x in a linear model y = Cx+v subject to the a priori information that the true parameter vector x belongs to a known convex polytope . The proposed estimator has the parametrized structure of the maximum a posteriori probability (MAP) estimator with prior Gaussian distribution, whose mean and covariance parameters are suitably designed via a linear matrix inequality approach so as to guarantee, for any x , an improvement of the mean-squared error (MSE) matrix over the least-squares (LS) estimator. It is shown that this approach outperforms existing “superefficient” estimators for constrained parameters based on different parametrized structures and/or shapes of the parameter membership region.File | Dimensione | Formato | |
---|---|---|---|
TSP2006-888094.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
757.57 kB
Formato
Adobe PDF
|
757.57 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.