M3 reflection intensity (I(M3)) from tetanized, intact skeletal muscle fiber bundles was measured during sinusoidal length oscillations at 2.8 kHz, a frequency at which the myosin motor's power stroke is greatly reduced. I(M3) signals were approximately sinusoidal, but showed a "double peak" distortion previously observed only at lower oscillation frequencies. A tilting lever arm model simulated this distortion, where I(M3) was calculated from the molecular structure of myosin subfragment 1 (S1). Simulations showed an isometric lever arm disposition close to normal to the filament axis at isometric tension, similar to that found using lower oscillation frequencies, where the power stroke contributes more toward total S1 movement. Inclusion of a second detached S1 in each actin-bound myosin dimer increased simulated I(M3) signal amplitude and improved agreement with the experimental data. The best agreement was obtained when detached heads have a fixed orientation, insensitive to length changes, and similar to that of attached heads at tetanus plateau. This configuration also accounts for the variations in relative intensity of the two main peaks of the M3 reflection substructure after a length change. This evidence of an I(M3) signal distortion when power stroke tilting is suppressed, provided that a large enough amplitude of length oscillation is used, is consistent with the tilting lever arm model of the power stroke.

Myosin lever disposition during length oscillations when power stroke tilting is reduced / GRIFFITHS P.J; M. BAGNI; B. COLOMBINI; H. AMENITSCH; S. BERNSTORFF; C.C. ASHLEY; G. CECCHI. - In: AMERICAN JOURNAL OF PHYSIOLOGY. CELL PHYSIOLOGY. - ISSN 0363-6143. - STAMPA. - 289:(2005), pp. C177-C186. [10.1152/ajpcell.00020.2005]

Myosin lever disposition during length oscillations when power stroke tilting is reduced

BAGNI, MARIA ANGELA;COLOMBINI, BARBARA;CECCHI, GIOVANNI
2005

Abstract

M3 reflection intensity (I(M3)) from tetanized, intact skeletal muscle fiber bundles was measured during sinusoidal length oscillations at 2.8 kHz, a frequency at which the myosin motor's power stroke is greatly reduced. I(M3) signals were approximately sinusoidal, but showed a "double peak" distortion previously observed only at lower oscillation frequencies. A tilting lever arm model simulated this distortion, where I(M3) was calculated from the molecular structure of myosin subfragment 1 (S1). Simulations showed an isometric lever arm disposition close to normal to the filament axis at isometric tension, similar to that found using lower oscillation frequencies, where the power stroke contributes more toward total S1 movement. Inclusion of a second detached S1 in each actin-bound myosin dimer increased simulated I(M3) signal amplitude and improved agreement with the experimental data. The best agreement was obtained when detached heads have a fixed orientation, insensitive to length changes, and similar to that of attached heads at tetanus plateau. This configuration also accounts for the variations in relative intensity of the two main peaks of the M3 reflection substructure after a length change. This evidence of an I(M3) signal distortion when power stroke tilting is suppressed, provided that a large enough amplitude of length oscillation is used, is consistent with the tilting lever arm model of the power stroke.
2005
289
C177
C186
GRIFFITHS P.J; M. BAGNI; B. COLOMBINI; H. AMENITSCH; S. BERNSTORFF; C.C. ASHLEY; G. CECCHI
File in questo prodotto:
File Dimensione Formato  
AJPCP05.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 939.14 kB
Formato Adobe PDF
939.14 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/204291
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact