An embedding theorem for the Orlicz-Sobolev space W^{1,A}_0(G), where G is an open subset of R^n, into a space of Orlicz-Lorentz type is established for any given Young function A. Such a space is shown to be the best possible among all rearrangement invariant spaces. A version of the theorem for anisotropic spaces is also exhibited. In particular, our results recover and provide a unified framework for various well-known Sobolev type embeddings, including the classical inequalities for the standard Sobolev space W^{1,p}_0(G) by O'Neil and by Peetre (1<p< n), and by Brezis-Wainger and by Hansson (p=n).

Optimal Orlicz-Sobolev embeddings / Cianchi, Andrea. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - STAMPA. - 20:(2004), pp. 427-474.

Optimal Orlicz-Sobolev embeddings

CIANCHI, ANDREA
2004

Abstract

An embedding theorem for the Orlicz-Sobolev space W^{1,A}_0(G), where G is an open subset of R^n, into a space of Orlicz-Lorentz type is established for any given Young function A. Such a space is shown to be the best possible among all rearrangement invariant spaces. A version of the theorem for anisotropic spaces is also exhibited. In particular, our results recover and provide a unified framework for various well-known Sobolev type embeddings, including the classical inequalities for the standard Sobolev space W^{1,p}_0(G) by O'Neil and by Peetre (1
2004
20
427
474
Cianchi, Andrea
File in questo prodotto:
File Dimensione Formato  
Cianchi_Ibero.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 406.43 kB
Formato Adobe PDF
406.43 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/204759
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 88
social impact