The best constant is exhibited in Trudinger’s exponential inequality for functions from the Sobolev space W^{1,n}(G),where G is an open subset of R^n, and n >1. This complements a classical result by Moser dealing with the subspace W^{1,n}_0(G). An extension to the borderline Lorentz-Sobolev spaces W^1L^{n,q}(G), with q between 1 and infinity is also established. A key step in our proofs is an asymptotically sharp relative isoperimetric inequality for domains in R^n.

Moser-Trudinger inequalities without boundary conditions and isoperimetric problems / A. CIANCHI. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - STAMPA. - 54:(2005), pp. 669-705.

Moser-Trudinger inequalities without boundary conditions and isoperimetric problems

CIANCHI, ANDREA
2005

Abstract

The best constant is exhibited in Trudinger’s exponential inequality for functions from the Sobolev space W^{1,n}(G),where G is an open subset of R^n, and n >1. This complements a classical result by Moser dealing with the subspace W^{1,n}_0(G). An extension to the borderline Lorentz-Sobolev spaces W^1L^{n,q}(G), with q between 1 and infinity is also established. A key step in our proofs is an asymptotically sharp relative isoperimetric inequality for domains in R^n.
2005
54
669
705
A. CIANCHI
File in questo prodotto:
File Dimensione Formato  
Moser_Indiana.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 424.76 kB
Formato Adobe PDF
424.76 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/204762
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 56
social impact