differential equations perturbed by a non-Gaussian noisy term. Namely, we show that the solution of the one-dimensional semi-linear stochastic damped wave equations μμtt(t, x)+ut(t, x) = Δu(t, x)+b(x, u(t, x))+g(x, u(t, x))ẇ(t), u(0) = o0, ut (0) = υ0, endowed with Dirichlet boundary conditions, converges as the parameter μ goes to zero to the solution of the semi-linear stochastic heat equation ut(t, x) = Δu(t, x) + b(x, u(t, x)) + g(x, u(t, x))ẇ(t), u(0) = u0, endowed with Dirichlet boundary conditions.

Smoluchowski-Kramers approximation for a general class of SPDE's / S. CERRAI; M. FREIDLIN. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - STAMPA. - 4:(2006), pp. 657-689. [10.1007/s00028-006-0281-8]

Smoluchowski-Kramers approximation for a general class of SPDE's

CERRAI, SANDRA;
2006

Abstract

differential equations perturbed by a non-Gaussian noisy term. Namely, we show that the solution of the one-dimensional semi-linear stochastic damped wave equations μμtt(t, x)+ut(t, x) = Δu(t, x)+b(x, u(t, x))+g(x, u(t, x))ẇ(t), u(0) = o0, ut (0) = υ0, endowed with Dirichlet boundary conditions, converges as the parameter μ goes to zero to the solution of the semi-linear stochastic heat equation ut(t, x) = Δu(t, x) + b(x, u(t, x)) + g(x, u(t, x))ẇ(t), u(0) = u0, endowed with Dirichlet boundary conditions.
2006
4
657
689
S. CERRAI; M. FREIDLIN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/205921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 34
social impact