N18TG2 neuroblastoma clone is defective for biosynthetic neurotransmitter enzymes; its inability to establish functional synapses is overcome in the neuroblastoma X glioma 108CC15, where acetylcholine synthesis is also activated. These observations suggest a possible relation between the ability to produce acetylcholine and the capability to advance in the differentiation program and achieve a fully differentiated state. Here, we report the characterization of several clones after transfection of N18TG2 cells with a construct containing a cDNA for rat choline acetyltransferase (ChAT). The ability of these clones to synthesize acetylcholine is demonstrated by HPLC determination on cellular extracts. In the transfected clones, northern blot analysis shows increased expression of mRNAs for a specific neuronal protein associated with synaptic vesicles, synapsin I. Fiber outgrowth of transfected clones is also evaluated to establish whether there is any relation between ChAT levels and morphological differentiation. This analysis shows that the transfected clone 1/2, not expressing ChAT activity, displays a very immature morphology, and its ability to extend fibers also remains rather poor in the presence of “differentiation“ agents such as retinoic acid. In contrast, clones 2/4, 3/1, and 3/2, exhibiting high ChAT levels, display higher fiber outgrowth compared with clone 1/2 in both the absence and the presence of differentiating agents.
Cellular acetylcholine content and neuronal differentiation / BIGNAMI F; BEVILACQUA P; BIAGIONI S; DE JACO A; F. CASAMENTI; FELSANI A.; AUGUSTI-TOCCO G. - In: JOURNAL OF NEUROCHEMISTRY. - ISSN 0022-3042. - ELETTRONICO. - 69:(1997), pp. 1374-1381.
Cellular acetylcholine content and neuronal differentiation
CASAMENTI, FIORELLA;
1997
Abstract
N18TG2 neuroblastoma clone is defective for biosynthetic neurotransmitter enzymes; its inability to establish functional synapses is overcome in the neuroblastoma X glioma 108CC15, where acetylcholine synthesis is also activated. These observations suggest a possible relation between the ability to produce acetylcholine and the capability to advance in the differentiation program and achieve a fully differentiated state. Here, we report the characterization of several clones after transfection of N18TG2 cells with a construct containing a cDNA for rat choline acetyltransferase (ChAT). The ability of these clones to synthesize acetylcholine is demonstrated by HPLC determination on cellular extracts. In the transfected clones, northern blot analysis shows increased expression of mRNAs for a specific neuronal protein associated with synaptic vesicles, synapsin I. Fiber outgrowth of transfected clones is also evaluated to establish whether there is any relation between ChAT levels and morphological differentiation. This analysis shows that the transfected clone 1/2, not expressing ChAT activity, displays a very immature morphology, and its ability to extend fibers also remains rather poor in the presence of “differentiation“ agents such as retinoic acid. In contrast, clones 2/4, 3/1, and 3/2, exhibiting high ChAT levels, display higher fiber outgrowth compared with clone 1/2 in both the absence and the presence of differentiating agents.File | Dimensione | Formato | |
---|---|---|---|
Bignami_J Neurochem_1997.pdf
Accesso chiuso
Tipologia:
Altro
Licenza:
Tutti i diritti riservati
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.