Given a compact symplectic manifold $(M,\,\kappa)$, $H^{2}(M,\,{\Bbb{R}})$\, represents, in a natural sense, the tangent space of the moduli space of germs of deformations of the symplectic structure. In the case $(M,\,\kappa,\,J)$ is a compact Kähler manifold, the author provides a complete description of the subset of $H^{2}(M,\,{\Bbb{R}})$ corresponding to Kähler deformations, including the non-generic case, where (at least locally) some hyperkähler manifold factors out from $M$. Several examples are also discussed.

Symplectic Deformations of Kaehler Manifolds / P. DE BARTOLOMEIS. - In: JOURNAL OF SYMPLECTIC GEOMETRY. - ISSN 1527-5256. - STAMPA. - Vol 3, n.3:(2005), pp. 341-355.

Symplectic Deformations of Kaehler Manifolds

DE BARTOLOMEIS, PAOLO
2005

Abstract

Given a compact symplectic manifold $(M,\,\kappa)$, $H^{2}(M,\,{\Bbb{R}})$\, represents, in a natural sense, the tangent space of the moduli space of germs of deformations of the symplectic structure. In the case $(M,\,\kappa,\,J)$ is a compact Kähler manifold, the author provides a complete description of the subset of $H^{2}(M,\,{\Bbb{R}})$ corresponding to Kähler deformations, including the non-generic case, where (at least locally) some hyperkähler manifold factors out from $M$. Several examples are also discussed.
2005
Vol 3, n.3
341
355
P. DE BARTOLOMEIS
File in questo prodotto:
File Dimensione Formato  
euclid.jsg.1144954877.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 414.37 kB
Formato Adobe PDF
414.37 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/206809
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact