Given a compact symplectic manifold $(M,\,\kappa)$, $H^{2}(M,\,{\Bbb{R}})$\, represents, in a natural sense, the tangent space of the moduli space of germs of deformations of the symplectic structure. In the case $(M,\,\kappa,\,J)$ is a compact Kähler manifold, the author provides a complete description of the subset of $H^{2}(M,\,{\Bbb{R}})$ corresponding to Kähler deformations, including the non-generic case, where (at least locally) some hyperkähler manifold factors out from $M$. Several examples are also discussed.
Symplectic Deformations of Kaehler Manifolds / P. DE BARTOLOMEIS. - In: JOURNAL OF SYMPLECTIC GEOMETRY. - ISSN 1527-5256. - STAMPA. - Vol 3, n.3:(2005), pp. 341-355.
Symplectic Deformations of Kaehler Manifolds
DE BARTOLOMEIS, PAOLO
2005
Abstract
Given a compact symplectic manifold $(M,\,\kappa)$, $H^{2}(M,\,{\Bbb{R}})$\, represents, in a natural sense, the tangent space of the moduli space of germs of deformations of the symplectic structure. In the case $(M,\,\kappa,\,J)$ is a compact Kähler manifold, the author provides a complete description of the subset of $H^{2}(M,\,{\Bbb{R}})$ corresponding to Kähler deformations, including the non-generic case, where (at least locally) some hyperkähler manifold factors out from $M$. Several examples are also discussed.File | Dimensione | Formato | |
---|---|---|---|
euclid.jsg.1144954877.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
414.37 kB
Formato
Adobe PDF
|
414.37 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.