Let $M$ be a differentiable manifold and $f: [0,\infty)\times M \to M$ be a $C^1$ map satisfying the condition $f(0,p) = p$ for all $p\in M$. Among other results, we prove that when the degree (also called Hopf index or Euler characteristic) of the tangent vector field $w\colon M\to TM$, given by $w(p) = {\partialf \over \partial\lambda} (0,p)$, is well defined and nonzero, then we obtain global bifurcation. This extends known results regarding the existence of harmonic solutions of periodic ordinary differential equations on manifolds.

Global Bifurcation of Fixed Points and the Poincaré Translation Operator on Manifolds / M. Furi; M. Pera. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 173:(1997), pp. 313-331.

Global Bifurcation of Fixed Points and the Poincaré Translation Operator on Manifolds

FURI, MASSIMO;PERA, MARIA PATRIZIA
1997

Abstract

Let $M$ be a differentiable manifold and $f: [0,\infty)\times M \to M$ be a $C^1$ map satisfying the condition $f(0,p) = p$ for all $p\in M$. Among other results, we prove that when the degree (also called Hopf index or Euler characteristic) of the tangent vector field $w\colon M\to TM$, given by $w(p) = {\partialf \over \partial\lambda} (0,p)$, is well defined and nonzero, then we obtain global bifurcation. This extends known results regarding the existence of harmonic solutions of periodic ordinary differential equations on manifolds.
1997
173
313
331
M. Furi; M. Pera
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/209532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact