We consider a mathematical model for solidification of semicrystalline polymers, describing the evolution of temperature, crystalline volume fraction, number and average size of crystals. In turn, the model couples a suitable kinetics of nonisothermal crystallization, taking into account both formation and growth of nuclei, with the thermal energy balance equation. We also present a model of secondary crystallization. The numerical approximation is performed by semiexplicit finite differences in time and finite elements in space. The fully discrete scheme amounts to solve, at any time step, a symmetric positive definite linear system preceded by an elementwise explicit computation. The computed numerical crystal structures match qualitatively the experimental ones.

Numerical simulation of polymer crystallization / D. ANDREUCCI; A. FASANO; M. PAOLINI; M. PRIMICERIO; C. VERDI. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - STAMPA. - 4:(1994), pp. 135-145. [10.1142/S0218202594000091]

Numerical simulation of polymer crystallization

FASANO, ANTONIO;PRIMICERIO, MARIO;
1994

Abstract

We consider a mathematical model for solidification of semicrystalline polymers, describing the evolution of temperature, crystalline volume fraction, number and average size of crystals. In turn, the model couples a suitable kinetics of nonisothermal crystallization, taking into account both formation and growth of nuclei, with the thermal energy balance equation. We also present a model of secondary crystallization. The numerical approximation is performed by semiexplicit finite differences in time and finite elements in space. The fully discrete scheme amounts to solve, at any time step, a symmetric positive definite linear system preceded by an elementwise explicit computation. The computed numerical crystal structures match qualitatively the experimental ones.
1994
4
135
145
D. ANDREUCCI; A. FASANO; M. PAOLINI; M. PRIMICERIO; C. VERDI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/209666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 9
social impact