The pure-quantum self-consistent harmonic approximation (PQSCHA) permits to study a quantum system by means of an effective classical Hamiltonian - depending on (h) over bar and temperature - and classical-like expressions for the averages of observables. In this work the PQSCHA is derived in terms of the holomorphic variables connected to a set of bosonic operators. The holomorphic formulation, based on the path integral for the Weyl symbol of the density matrix, makes it possible to approach directly general Hamiltonians given in terms of bosonic creation and annihilation operators. (C) 1999 Elsevier Science B.V. All rights reserved.

Effective Hamiltonian with holomorphic variables / CUCCOLI A.; R. GIACHETTI; MACIOCCO R.; TOGNETTI V.; VAIA R.. - In: PHYSICA. A. - ISSN 0378-4371. - STAMPA. - 271:(1999), pp. 387-404. [10.1016/S0378-4371(99)00207-1]

Effective Hamiltonian with holomorphic variables

CUCCOLI, ALESSANDRO;GIACHETTI, RICCARDO;TOGNETTI, VALERIO;
1999

Abstract

The pure-quantum self-consistent harmonic approximation (PQSCHA) permits to study a quantum system by means of an effective classical Hamiltonian - depending on (h) over bar and temperature - and classical-like expressions for the averages of observables. In this work the PQSCHA is derived in terms of the holomorphic variables connected to a set of bosonic operators. The holomorphic formulation, based on the path integral for the Weyl symbol of the density matrix, makes it possible to approach directly general Hamiltonians given in terms of bosonic creation and annihilation operators. (C) 1999 Elsevier Science B.V. All rights reserved.
1999
271
387
404
CUCCOLI A.; R. GIACHETTI; MACIOCCO R.; TOGNETTI V.; VAIA R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/210017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact