We consider the relativistic quantum mechanics of a two interacting fermions system. We first present a covariant formulation of the kinematics of the problem and give a short outline of the classical results. We then quantize the system with a general interaction potential and deduce the explicit equations in a spherical basis. The case of the Coulomb interaction is studied in detail by numerical methods, solving the eigenvalue problem for j = 0, j = 1, j = 2 and determining the spectral curves for a varying ratio of the mass of the interacting particles. Details of the computations, together with a perturbative approach in the mass ratio and an extended description of the ground states of para- and orthopositronium, are given in the appendices.

Two fermion relativistic bound states / R. GIACHETTI; SORACE E.. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND GENERAL. - ISSN 0305-4470. - STAMPA. - 38:(2005), pp. 1345-1370. [10.1088/0305-4470/38/6/012]

Two fermion relativistic bound states

GIACHETTI, RICCARDO;
2005

Abstract

We consider the relativistic quantum mechanics of a two interacting fermions system. We first present a covariant formulation of the kinematics of the problem and give a short outline of the classical results. We then quantize the system with a general interaction potential and deduce the explicit equations in a spherical basis. The case of the Coulomb interaction is studied in detail by numerical methods, solving the eigenvalue problem for j = 0, j = 1, j = 2 and determining the spectral curves for a varying ratio of the mass of the interacting particles. Details of the computations, together with a perturbative approach in the mass ratio and an extended description of the ground states of para- and orthopositronium, are given in the appendices.
2005
38
1345
1370
R. GIACHETTI; SORACE E.
File in questo prodotto:
File Dimensione Formato  
JPhysAAbstract.pdf

accesso aperto

Tipologia: Altro
Licenza: Open Access
Dimensione 32.14 kB
Formato Adobe PDF
32.14 kB Adobe PDF
JPhysA.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 405.05 kB
Formato Adobe PDF
405.05 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/210020
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact